Novel Purification Method of Kv 4.2 Potassium Channel from Rat Brain Membrane

  • Park, Sung-Soo (Cheju Traditional Food Institute, Cheju Halla University)
  • Received : 2012.04.13
  • Accepted : 2012.06.25
  • Published : 2012.06.30

Abstract

Kv 4.2 ion channel protein has an ability to open at subthreshold membrane potentials and to recover quickly from inactivation. That is very important for neuronal signal transmission in vertebrate brain. In order to purify Kv 4.2 protein, the novel purification methods were experimented. The purification procedure utilized chromatography on DE-52 ion exchange column and affinity chromatography on a WGA-Sepharose 4B, and Kv 4.2 affinity column chromatography. It was found that 0.5% (wt./vol.) Triton X-100 detergent in lysis buffer worked well for Kv 4.2 protein solubilization from rat brain membrane. Protein quantitative determination was conducted by BCA method at 562 nm for each purification step to avoid determination interference of protein at 280 nm by detergent. The confirmation of Kv 4.2 existence and amount is performed using by SDS-PAGE/immunoblotting or 96-well dot blotting. The Kv 4.2 without interacting protein that contains carbohydrate, was purified from novel biochemical 3-steps purification method for further research.

Keywords

References

  1. Alonso G, Widmer H. Clustering of KV4.2 potassium channels in postsynaptic membrane of rat supraoptic neurons: an ultrastructural study. Neuroscience 1997. 77: 617-621. https://doi.org/10.1016/S0306-4522(96)00561-1
  2. Baldwin TJ, Tsaur ML, Lopez GA, Jan YN, Jan LY. Characterization of a mammalian cDNA for an inactivating voltage-sensitive $K^{+}$ channels. Neuron 1991. 7: 471-483. https://doi.org/10.1016/0896-6273(91)90299-F
  3. Barry DM, Trimmer JS, Merlie JP, Nerbonne JM. Differential expression of voltage-gated $K^{+}$ channel subunits in adult rat heart. Relation to functional $K^{+}$ channels. Circulation Research 1995. 77: 361-369. https://doi.org/10.1161/01.RES.77.2.361
  4. Bekele-Arcuri Z, Matos MF, Manganas L, Strassle BW, Monaghan MM, Rhodes KJ, Trimmer JS. Generation and characterization of subtype-specific monoclonal antibodies to $K^{+}$ channel alpha- and beta-subunit polypeptides. Neuropharmacology 1996. 35: 851-865. https://doi.org/10.1016/0028-3908(96)00128-1
  5. Castle NA, Haylett DG, Jenkinson DH. Toxins in the characterization of potassium channels. Trends in Neuroscience 1989. 12: 59-65. https://doi.org/10.1016/0166-2236(89)90137-9
  6. Deutscher MP. Methods in Enzymology, 1990. Vol 182. Academic Press, New York, USA.
  7. Dixon JE, McKinnon D. Quantitative analysis of potassium channel mRNA expression in atrial and ventricular muscle of rats. Circulation Research 1994. 75: 252-260. https://doi.org/10.1161/01.RES.75.2.252
  8. Furukawa T, Myerburg RJ, Furukawa N, Bassett AL, Kimura S. Differences in transient outward currents of feline endocardial and epicardial myocytes. Circulation Research 1990. 67:1287-1291. https://doi.org/10.1161/01.RES.67.5.1287
  9. Grover GJ. Protective effects of ATP sensitive potassium channel openers in models of myocardial ischaemia. Cardiovascular Research 1994. 28: 778-782. https://doi.org/10.1093/cvr/28.6.778
  10. Heinemann SH, Rettig J, Graack HR, Pongs O. Functional characterization of Kv channel beta-subunits from rat brain. Journal of Physiology 1996. 493: 625-633. https://doi.org/10.1113/jphysiol.1996.sp021409
  11. Helenius A, McCaslin DR, Fries E, Tanford C. Properties of detergents. in Method in Enzymology (Fleischer, S. and Packer, L. Eds.), 1979, Vol. 56.pp734-749 Academic Press, New York, USA.
  12. Hille B. Modulation of ion-channel function by G-protein-coupled receptors. Trends Neuroscience 1994. 12: 531-536.
  13. Hoffman DA, Magee JC, Colbert CM, Johnston D. $K^{+}$ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature. 1997. 387: 869-875. https://doi.org/10.1038/43119
  14. Hurst RS, Busch AE, Kavanaugh MP, Osborne PB, North RA, Adelman JP. Identification of amino acid residues involved in dendrotoxin block of rat voltage dependent potassium channles. Molecular Pharmacology 1991. 40: 572-576.
  15. Johnson DA, Gautsch JW, Sportsman JR, Elder JH. Improved technique utilizing nonfat dry milk for analysis of proteins and nucleic acids transferred to nitrocellulose. Gene Analysis Techniques 1984. 1: 3-8. https://doi.org/10.1016/0735-0651(84)90049-9
  16. Katz LB, Giordino EC, Salata JJ, Moore JB Jr, Faltico R. RWJ 26629, a new potassium channel opener and vascular smooth muscle relaxant: a potential antihypertensive and antianginal agent. Journal of Pharmacology Experimental Therapeutics 1993. 267: 648-656.
  17. Li JH, Yasay GD, Zorgrafos P, Kau ST, Ohnmacht CJ, Russell K, Empfield JR, Brown FJ, Trainor DA, Bonev AD. Zeneca ZD6169 and its analogs from a novel series of anilide tertiary carbinols: In vitro K ATP channel opening activity in bladder detrusor. Pharmacology 1995. 51: 33-42. https://doi.org/10.1159/000139314
  18. Liu DW, Gintant GA, Antzelevitch C. Ionic bases for electro-physiological distinctions among epicardial, mid-myocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circulation Research 1993. 72: 671-687. https://doi.org/10.1161/01.RES.72.3.671
  19. Lynch JJ, Sanguinetti MC, Kimura S, Bassett AL. Therapeutic potential of modulating potassium currents in the diseased myocardium. Federation of American Societies of Experimental Biology Journal 1992. 6: 2952-2960. https://doi.org/10.1096/fasebj.6.11.1386585
  20. Maizel JV. Methods in Virology, 1971, Vol. 5. pp179-246, Academic press, New York, USA.
  21. Manganas LN, Trimmer JS. Subunit composition determines Kv1 potassium channel surface expression. Journal of Biological Chemistry 2000. 275: 29685-29693. https://doi.org/10.1074/jbc.M005010200
  22. Martina M, Schultz JH, Ehmke H, Monye H, Jonas P. Functional and molecular differences between voltage-gated $K^{+}$ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. Journal of Neuroscience 1998. 18: 8111-8125.
  23. Miller C. The charybdotoxin family of $K^{+}$ channels-blocking peptides. Neuron 1995. 15: 5-10. https://doi.org/10.1016/0896-6273(95)90057-8
  24. Monaghan MM, Trimmer JS, Rhodes KJ. Experimental Localization of Kv1 Family Voltage-Gated KChannel and Subunits in Rat Hippocampal Formation. Journal of Neuroscience 2001. 21: 5973-5983.
  25. Nagata Y, Burger MM. Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. Journal of Biological Chemistry 1974. 249: 3116-3122.
  26. Neugebauer J. A guide to the Properties and Uses of Detergents in Biology and Biochemistry, 1988, Calbiochem-Novabiochem Cooperation, San Diego, USA.
  27. Olesen SP. Activators o large-conductance $Ca^{2+}$dependent $K^{+}$ channels. Experimental Opinion Investigation Drugs 1994. 3: 1181-1188.
  28. Pak MD, Baker K, Covarrubias M, Butler A, Ratcliffe A, Salkoff L. mShal, a subfamily of A-type $K^{+}$ channel cloned from mammalian brain. Proceedings of Natural Academy of Science of the USA 1991. 88: 4386-4390. https://doi.org/10.1073/pnas.88.10.4386
  29. Panzeter PL, Zweifel B, Malanga M, Waser SH, Richard M, Althaus FR. Targeting of histone tails by poly (ADP-ribose). Journal of Biological Chemistry 1993. 268: 17662-17664.
  30. Quast U, Guillon JM, Cavero I. Modulation of $K^{+}$ channels: pharmacological and therapeutic aspects. In Pharmacological control of Calcium and Potassium Homeostasis (Godfraind T, Eds). 1995. pp23-42. Kluwer, Netherland.
  31. Rettig J, Heinemann SH, Wunder F, Lorra C, Parcej DN, Dolly JO, Pongs, O. Inactivation properties of voltage-gated $K^{+}$ channels altered by presence of beta-subunit. Nature 1994. 369: 289-294. https://doi.org/10.1038/369289a0
  32. Rhodes KJ, Keilbaugh SA, Barrezueta NX, Lopez KL, Trimmer JS. Association and colocalization of $K^{+}$ channel alpha- and beta-subunit polypeptides in rat brain. Journal of Neuroscience 1995. 15: 5360-5371.
  33. Rhodes KJ, Monaghan MM, Barrezueta NX, Nawoschik S, Bekele-Arcuri Z, Matos MF, Nakahira K, Schechter LE, Trimmer JS. Voltage-gated $K^{+}$ channel beta subunits: expression and distribution of Kv beta 1 and Kv beta 2 in adult rat brain. Journal of Neuroscience 1996. 16: 4846-4860.
  34. Roberds SL, Tamkun MM. Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart. Proceedings of Natural Academy of Science of the USA 1991. 88: 1798-1802. https://doi.org/10.1073/pnas.88.5.1798
  35. Rudy B. Diversity and ubiquity of K channels. Neuroscience 1988. 25: 729-749. https://doi.org/10.1016/0306-4522(88)90033-4
  36. Schroter KH, Ruppersberg JP, Wunder F, Rettig J, Stocker M, Pongs O. Cloning and functional expression of a TEA-sensitive A-type potassium channel from rat brain. Federation of European Biochemical Societies Letter 1991. 278: 211-216. https://doi.org/10.1016/0014-5793(91)80119-N
  37. Serodio P, Kentros C, Rudy B. Identification of molecular components of A-type channels activating at subthreshold potentials. Journal of Neurophysiology 1994. 72: 1516-1529. https://doi.org/10.1152/jn.1994.72.4.1516
  38. Serodio P, Vega-Saenz de Miera E, Rudy B. Cloning of a novel component of A-type $K^{+}$ channels operating at subthres-hold potentials with unique expression in heart and brain. Journal of Neurophysiology 1996. 75: 2174-2179. https://doi.org/10.1152/jn.1996.75.5.2174
  39. Serodio P, Rudy B. Differential expression of Kv4 $K^{+}$ channel subunits mediating subthreshold transient $K^{+}$ (A-type) currents in rat brain. Journal of Neurophysiology 1998. 79: 1081-1091. https://doi.org/10.1152/jn.1998.79.2.1081
  40. Sheng M, Tsaur ML, Jan YN, Jan LY. Subcellular segregation of two A-type $K^{+}$ channel proteins in rat central neurons. Neuron 1992. 9: 271-284. https://doi.org/10.1016/0896-6273(92)90166-B
  41. Shi G, Nakahira K, Hammond S, Rhodes KJ, Schechter LE, Trimmer JS. Beta subunits promote $K^{+}$ channel surface expression through effects early in biosynthesis. Neuron. 1996 16: 843-852. https://doi.org/10.1016/S0896-6273(00)80104-X
  42. Shi W, Wymore RS, Wang HS, Pan Z, Cohen IS, McKinnon D, Dixon JE. Identification of two nervous system-specific members of the erg potassium channel gene family. Journal of Neuroscience 1997. 17: 9423-9432.
  43. Stanfeld CE, Marsh SJ, Parcej DN, Dolly JO, Brown DA. Mast cell degranulating peptide and dendrotoxin selectively inhibit a fast-activating potassium current and bind to common neuronal proteins. Neuroscience 1987. 23: 893-902. https://doi.org/10.1016/0306-4522(87)90166-7
  44. Stuhmer W, Ruppersberg JP, Schroter KH, Sakmann B, Stocker M, Giese KP, Perschke A, Baumann A, Pongs O. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. European Molecular Biology Organization Journal 1989. 8: 3235-3244.
  45. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Procedure and some applications. Proceedings of Natural Academy of Science of the USA 1979. 76: 4350-4354. https://doi.org/10.1073/pnas.76.9.4350