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이 논문은 물류배송의 불확실성하에서의 생산자의 배송전략 문제를 다루고 있다. 즉 생산자의 배송수량이 전량 
온전한 상태로 소매업체의 창고에 배송되지 못하는 상황을 고려한 것이다. 물류배송의 불확실성을 묘사하기 위해 
물류배송을 위해 사용되는 개개의 트럭 또는 선박으로부터 발생되는 파손 제품의 수가 가각 독립적이며 동일한　

확률분포를 따른다는 가정이 사용되었다. 또한, 최초 배송수량과 배송을 위해 사용된 전체 트럭 또는 선박의 대수
를 기존의 단일구간 신문팔이 소년 문제에 적용하여 생산자의 이익함수를 구성하였다. 구성된 생산자의 이익함수를 
이용하여 생산자의 기대 이익을 최대화하는 최적의 최초 배송수량 및 배송시 필요한 최적의 트럭 또는 선박의 대

수를 계산해 내기 위한 최적해를 제시하였다. 마지막으로 이익함수 모델에서 사용된 다양한 파라미터 값의 조합에　
따른 최적해의 움직임을 시뮬레이션을 통해 알아보았다．
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1. Introduction1)

In this era of global sourcing, to reduce material purchase 
costs and to attract a larger base of customers, the domestic 
manufacturers such as Samsung Electronics, Hyundai Motors, 
LG Electronics are constantly seeking suppliers with lower 
prices and finding them at greater and greater distances. 
According to this, most of their domestic production facili-
ties and factories have been relocated to the developing 
countries like China, Vietnam, Mexico etc, to produce prod-
ucts in a more cost-efficient way. On the other hand, for 
products manufactured in these companies the actual market 

location is quite different from the production location. For 
Samsung Electronics, there are 35 production subsidiaries 
over 30 more countries and 47 sales subsidiaries over 40 
more countries. 

For many global companies, acquiring better logistics 
services has become one of the most important management 
strategy for last decade. The added distance introduced the 
significant uncertainty into the logistics operations in terms 
of both delivery time and successfully delivered number of 
sellable (or not damaged) products. One of the common prac-
tices to reduce overall transportation cost is to consolidate 
the orders from various customers and deliver the orders with 
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reduced number of trucks or vessels at a lowest logistics 
cost as possible. This is why global companies strategically 
introduce regional logistics hub or central distribution center. 
For Samsung, ADC (America Distribution Center) in Chicago 
takes the role of hub for North America Region and ELS 
(European Logistics System) in Denmark is the hub for 
European Market. 

But due to the various risks around supply chain the con-
solidated delivery should not always be favorable to the 
non-consolidated delivery option. In this research, we primar-
ily investigate tradeoff between the logistics service (or 
trucking) quality and the logistics cost investment. According 
to our problem formulation, the more investment on logistics 
operation has been made, the better logistics performances 
can be guaranteed. The major goal of this research is to de-
rive the optimal tradeoff between the number of products 
to　ship to match customer demands and the number of trucks 
(or vessels) to fulfill the required delivery from the manu-
facturer’s production factory to retailer’s distribution center. 
In section 2, related research has been addressed and 
summarized. In section 3, we formulate the above question 
on the basis of the well-known newsvendor model followed 
by the analytical solution to the proposed model. In section 
4, the computational study has been performed with the sum-
marized results to deliver managerial insights. Finally we 
conclude our research in section 5.

2. Literature Review

Our research is closely related to traditional single period 
inventory problem where the supply process or operation in-
cluding logistics service is not perfect. One of the earliest 
papers on the uncertain supply under economic order quan-
tity (EOQ) framework was written by Silver [14]. He studied 
two cases, in the first case, the standard deviation of the 
amount received is independent of the lot size, while in sec-
ond case the standard deviation is proportional to the lot size. 
The most interesting finding in Silver [14] was that the opti-
mal order quantity depends only on the mean and the stand-
ard deviation of the amount received. Shih [13] studied the 
optimal ordering schemes in a case where the proportion of 
defective products in the accepted lots has a known proba-
bility distribution. The yield rate is thus between 0 and 1 
and is assumed to be independent of the lot size. Similar 
to Silver’s results he showed that the optimal order quantity 

depends only on the model parameters and the first two mo-
ments of the underlying yield distribution. As expected, the 
optimal order quantity is greater than that of the certain yield 
case, but it was less intuitive that the optimal lot size de-
creases when the variance of the yield rate distribution 
increases. Noori and Keller [10] extended Silver’s model to 
obtain an optimal production quantity when the amount of 
products received at stores assumes probability distributions 
such as uniform, normal and gamma. They showed that for 
a uniform demand case the optimal ordering policy is in-
dependent of the yield distribution, but Rekik et al. [11] 
found out that the Noori and Keller’s result is not always 
valid for all system parameters. They identified several cases 
defined by certain ranges of system parameters to investigate 
the validity of Noori and Keller’s previous results. For the 
detailed survey of random yield literature, including ex-
clusive random yield models, Yano and Lee [17] is the most 
popular reference. 

Most of research presented above on the single-period in-
ventory problem dealt with solutions for the optimal size of 
order which maximizes the expected total profits. But these 
research have weakness due to the ‘flaw of average’ in solv-
ing the single-period inventory problem. To overcome this 
‘flaw of average’ many researchers tried to consider risk 
preferences, especially risk aversion of the decision maker.  
Lau [7], Spulber [15], Bouakiz and Sobel [2], Eeckhoudt 
et al. [5], Agrawal and Seshadri [1], Chen and Federgruen 
[3], Seifert et al. [12], Chen et al. [4], Haksoz and Seshadri 
[6]. Lau [7] examined newsvendor solutions which maximize 
expected utility under stochastic demand or stochastic supply 
situations. Eeckhoudt et al. [5] examined the risk and risk 
aversion in a single-period inventory problem where demand 
is stochastic while supply is deterministic. They show that 
the optimal order quantity decreases as decision maker’s 
risk-aversion increases because a lower order amount defi-
nitely reduces the inherent risks of the outcome. In Bouakiz 
and Sobel [2], they explored the newsvendor problem with 
the exponential utility and showed that a base-stock policy 
is optimal when a multi-period newsvendor problem is opti-
mized with an exponential utility criterion. Agrawal and 
Seshadri [1] also investigated the newsvendor problem with 
the objective being maximizing the expected utility. In their 
problem setting, both price and order quantity are decision 
variables for the risk-averse retailer. In Kim et al. [8] they 
introduced a constraint, so called ‘Value-at-Risk’, into the 
given model to reflect the decision makers risk preferences. 
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They investigated the various impacts of risk preference, 
which is specified by parameters of ‘Value-at-Risk’, on the 
optimal order quantity using relevant numerical examples. 

In general, none of models described above do not link 
the supply chain and logistics decision processes together. 
They rather focus on the modeling of uncertain demand and 
supply processes with or without risk attitude of the decision 
maker. See Kim et al. [9] for the comprehensive analysis 
of the impact of logistics quality on the optimal product or-
dering decision processes of the retailer. Their research is 
similar to ours in that they assume k manufacturers to deliver 
products to single retailer. But they did not consider the lo-
gistics cost variable in their model. Without explicitly in-
troducing the logistics cost variable it is not easy to analyze 
the behavior of the decision maker on the various status of 
the logistics investment.

In this paper, the topic of the uncertain supply situation 
in the single period inventory problem setting has been com-
bined with the problem of determining the optimal logistics 
investment on the assumption that the quality of logistics 
can be improved via additional investment. This topic is dif-
ferent from that of Kim et al. [9] in that the logistics quality 
factor is introduced as a decision variable representing the 
number of transportation tools (or, trucks or vessels) while 
Kim et al. [9] do not implicitly use the additional variable 
but simply use the variables for the proportion of defective 
products (TPDP) along the supply chain network. 

3. Model and Analysis

We consider the product-ordering decisions of manu-
facturer who is facing uniform demand from it’s retail 
customer. The retail customer purchases a single item of 
products from this single manufacturer. All orders from this 
retail customer is aggregate to the manufacturer’s a specific 
production center then shipped to the retailer using trucks 
(or vessels). The required number of trucks (or vessels), 
which will be denoted by m, is determined based on the 
reliability of the logistics operations of each channel. The 
reason why the manufacture should consider delivering using 
more than one truck (m > 1), even when one truck capacity 
is enough to carry the whole shipment of size Q, is in the 
reduction of the variability of the amount of defects among 
the original shipped quantity from the manufacturer’s site. 
We model this problem as a single period news-vendor prob-

lem where logistics cost is proportional to the number of  
appointed trucks (or vessels).

The following notation will be used in the formulation 
of our model :

Q : Total order quantity requested by retailer (the first de-
cision variable)

r : Unit retail price
m : Number of trucks to fulfill the delivery of Q products 

from manufacture’s warehouse to the retailer’s DC 
(the second decision variable)

h : Unit holding cost per period for unsold products at 
the manufacturer’s warehouse

 : Unit shortage cost for manufacturer per period per 
product short 

 : Demand rate of retailer’s DC per period, uniformly 
distributed with parameters a and b, ~U(a, b), where 
a < b

Pj : r.v. representing total proportion of defects among 
shipped products using truck j, j = 1, ···, m

Y : r.v. representing total proportion of defects among Q 
in transit, Y = (P1 + P2 + ··· + Pm)/m

 : Logistics cost per each truck between DC and retailer.

We also make following assumptions for our model :
A1) The total order quantity is equally split into m trucks
A2) Pjs are i.i.d. with E[Pj] =  and Var[Pj] = 

A3) There is no capacity limit for each truck
A4) When m trucks are used, each truck carries same 

number of items
A5) Distribution of Pj and the size of shipment are in-

dependent amount of products

Even though we assume i.i.d. damage distribution for each 
truck, our model can be easily extended to the non i.i.d case 
by changing the logistics cost function. Suppose there are 
three logistics channels available to the manufacturer, e.g. 
trucks, rails, and planes from DC to the retailer. Then, the 
i.i.d. damage distribution assumption is not realistic to repre-
sent the damage process from each channel and so we need 
to use different unit logistics cost associated with each logistics 
channel. To choose or not to choose each channel can be 
modeled as decision variables by introducing binary variables. 
It is an interesting future research problem. On the other 
hand, in A3) we address the unlimited truck capacity. It sounds 
unrealistic but in certain situation such as when the size of 
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products are so small, i.e. the computer memory related products 
or mobile phones, this assumption can be satisfied in general.

Using notations explained above, the manufacturer’s profit 
function can be constructed as a function of decision varia-
bles, Q and m, respectively :

    

  

   

    

Therefore, the manufacturer’s expected profit can be ex-
pressed as

    

  
    (1)

where ESR (Expected Sales Revenue), ETIC (Expected 
Total Inventory Cost), and ETLC (Expected Total Logistics 
Cost) are as following : 

  

 







∞















 







∞

 

 

Under the assumption of uniformly distributed customer 
demand, it is not too hard to show








 











so that expected profit simplifies to :

 
 

×  







 





 






 

(2)

where  = EPj = EY, and  = V Pj. The optimal order 
quantity  represents the boundary value where an in-
creased order provides cost or benefit. And the optimal num-
ber of trucks  represents the threshold value where using 
an additional truck provides cost or benefit.　In the following, 
we drive the closed form solution which maximizes the re-
tailer’s expected profit as in (2). The result is stated in the 
theorem 4.1 with the proof.

Theorem 4.1  The optimal solution   to the prob-
lem (2) exists and unique. Furthermore

 
∈⌊⌋⌊⌋  

  


⋅

where 
  is the optimal order quantity 

in the conventional news-vendor problem when there exist 
no damages occurring in the logistics operations (i.e., 

  ), 
 




 


⌊⌋ is 

the largest integer less than or equal to  .

Proof： Firstly, we prove the existence and uniqueness 
of the solution. Here, it suffices to show that the Hessian 
matrix of     is negative definite (i.e., to show 
    is a strictly concave function in both Q and m). 
Consider the function
   , with the corresponding Hessian matrix :

 








 

 


 



 













 








 






To check the negative definiteness of this Hessian matrix, 
we need to compute the determinants of the principal minors 
of the Hessian matrix ,  and  :

  
 



 


 



 


  



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and use the definition of the negative definiteness. In our 
case, it is not difficult to show that  > 0 and  > 0. 
Therefore, the solution   uniquely exists. Secondly, to 
derive  we can apply the first order condition to (2) to 
get :








 

×  







≈ 







 

(3)

It is clear to see that   


⋅ satis-

fies the first order condition shown in (3). Now, from the 
first order condition of   on    we have :




≈

 








  

(4)

Considering the discreteness of  it is obvious that 

 
∈⌊⌋⌊⌋    maximizes  

  QED.

To prove  we can also use the logical intuition together 
with the concavity property of    . If we increase 
m to m+1 the first two components of (1) improve due to 
the reduced variability representing the increased sales rev-
enue and decreased corresponding inventory costs. At the 
same time the additional truck incurs the additional invest-
ment on the logistics operation which is equivalent to  . 
Therefore  should satisfy the following :

 ≤  ≤   (5)

In (5), at   the benefit from the operational varia-
bility reduction surpasses the accompanying cost to appoint 
the additional truck. Theorem 4.1 addresses that there exists 
a optimal number of trucks which maximizes the manu-
facturer’s expected profit when the service provided by each 

truck is not perfect to guarantee zero defect during delivery 
process.

In the following section we conduct some numerical anal-
yses to draw useful managerial insights from the analytical 
result derived in this section.

4. Computational Study

To further understand the implication of results from the 
previous section, we consider an numerical example employ-
ing a variety of values of model parameters. 

<Table 1> Parameter Values

Parameter Value

r $50

h $10

π $30

a 100

b 150

μ 0.2, 0.3, 0.4, 0.5

σ 0.2, 0.3, 0.4, 0.5

β $400, $800, $1200, $1600, 

<Table 1> shows the various values of the input parame-
ters that were considered in our numerical studies. In our 
numerical studies, even though there is no capacity limit on 
the truck, we found in certain cases that the expected profit 
is larger when two or more trucks are used to deliver the 
products to the retailer. This is because the increasement of 
the profit due to the reduced variability from the trans-
portation operation, surpasses the additional investment cost, 
i.e. cost of using additional trucks.

According to our numerical example, the increase in profit 
using more than one truck ranges from 0% to over 1,188%. 
The results using various parameter values exhibit very sim-
ilar pattern as shown in <Figure 1> ~ <Figure 3>. The per-
centage columns in Figures represent the percentage increase 
in manufacturer’s expected profit when manufacturer uses 
more than one truck (channel). We used

   × 

to compute those values where  is the optimal order quantity 
when   is fixed at 1.
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<Figure 2> Effects of Mean Damage Proportion, μ

   <Figure 3> Effects of Standard Deviation of Damage 

Proportion, σ

<Figure 1> Effects of Logistics Cost, β

In <Figure 1>, we investigate the effects of logistics cost 
  on the optimal number of trucks to be used, which is   
as well as on the increase in expected profit. In each graph, 
holding the mean , and the standard deviation   of pro-
portion of defects from each truck, constant, we change the 
values of  . From various scenarios considered, it is shown 
that the number of trucks to be used increases as the un-
certainty in logistics operations becomes larger and larger. 
The benefits of employing more than one truck  ≥   
are getting bigger and bigger with more uncertainty in the 
performance of logistics channel. But, as   increases these 
benefits are becoming smaller and smaller due to the ex-
pensive total logistics cost (i.e., ). Consider the first graph 
in Figure. 1 where the level of uncertainty is set at the mini-
mum (i.e.,      ). The only difference is when 
  = $400. In this case, the increase in profit by using addi-
tional truck is $518(= $400+$118), which is due to the re-
duced variability in logistics performance, bypasses the addi-
tional logistics cost, $400, by $118. The second column from 
the right in <Figure 1> ~ <Figure 3>, named ‘Diff.’, shows 
the total increase in profit when more than one truck are 
being used to carry products. Intuitively, one would expect 
an increased logistics cost to lead to decreased order quanti-
ties, which is the case in <Figure 1>. In general, order quanti-
ties increase as  increases or as   increases.

The mean of damage proportion, , is varying while the 
standard deviation,  , and marginal logistics cost are fixed 
in <Figure 2>. As shown from all four graphs, it is clear 
to see that the manufacturer’s expected profits are always 

greater when manufacturer deploys more than single truck 
and the marginal profit increase is becoming larger and larger 
as the uncertainties presented in the logistics service is get-
ting bigger and bigger. Increase in  will lead both the num-
ber of trucks to be used and the order quantities to increase. 

Finally, in <Figure 3> the standard deviation is varying 
while the mean, , and the marginal logistics cost,   are 
held at constant. As similar to the result in <Figure 2> the 
increase in  will lead to increased  and decreased . 
Benefits from using more than one truck are most significant 
when  and   are set at minimum ( = 0.2,   = 400). 
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5. Conclusion

In this paper we have reviewed the manufacturer’s prob-
lem of seeking the optimal amount of delivery quantities to 
meet the retailer’s stochastic demand as well as the optimal 
number of trucks to deliver products from the manufacturer’s 
warehouse to retailer’s distribution center. where the retailer’s 
demand is assumed to follow the simple uniform distribution. 
From our study we showed that there always exist the optimal 
solution to this problem. And in certain cases where the quality 
of transportation process is not perfect the manufacturer is 
better off to invest on achieving better transportation quality 
by adopting multiple trucks to fulfill the delivery mission. 
It will be interesting future research topic to consider when 
the manufacturer has to ship to multiple distribution centers 
of retailer. 
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