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1. Introduction

In this era of global sourcing, to reduce material purchase
costs and to attract a larger base of customers, the domestic
manufacturers such as Samsung Electronics, Hyundai Motors,
LG Electronics are constantly seeking suppliers with lower
prices and finding them at greater and greater distances.
According to this, most of their domestic production facili-
ties and factories have been relocated to the developing
countries like China, Vietnam, Mexico etc, to produce prod-
ucts in a more cost-efficient way. On the other hand, for
products manufactured in these companies the actual market
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location is quite different from the production location. For
Samsung Electronics, there are 35 production subsidiaries
over 30 more countries and 47 sales subsidiaries over 40
more countries.

For many global companies, acquiring better logistics
services has become one of the most important management
strategy for last decade. The added distance introduced the
significant uncertainty into the logistics operations in terms
of both delivery time and successfully delivered number of
sellable (or not damaged) products. One of the common prac-
tices to reduce overall transportation cost is to consolidate
the orders from various customers and deliver the orders with
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reduced number of trucks or vessels at a lowest logistics
cost as possible. This is why global companies strategically
introduce regional logistics hub or central distribution center.
For Samsung, ADC (America Distribution Center) in Chicago
takes the role of hub for North America Region and ELS
(European Logistics System) in Denmark is the hub for
European Market.

But due to the various risks around supply chain the con-
solidated delivery should not always be favorable to the
non-consolidated delivery option. In this research, we primar-
ily investigate tradeoff between the logistics service (or
trucking) quality and the logistics cost investment. According
to our problem formulation, the more investment on logistics
operation has been made, the better logistics performances
can be guaranteed. The major goal of this research is to de-
rive the optimal tradeoff between the number of products
to ship to match customer demands and the number of trucks
(or vessels) to fulfill the required delivery from the manu-
facturer’s production factory to retailer’s distribution center.
In section 2, related research has been addressed and
summarized. In section 3, we formulate the above question
on the basis of the well-known newsvendor model followed
by the analytical solution to the proposed model. In section
4, the computational study has been performed with the sum-
marized results to deliver managerial insights. Finally we
conclude our research in section 5.

2. Literature Review

Our research is closely related to traditional single period
inventory problem where the supply process or operation in-
cluding logistics service is not perfect. One of the earliest
papers on the uncertain supply under economic order quan-
tity (EOQ) framework was written by Silver [14]. He studied
two cases, in the first case, the standard deviation of the
amount received is independent of the lot size, while in sec-
ond case the standard deviation is proportional to the lot size.
The most interesting finding in Silver [14] was that the opti-
mal order quantity depends only on the mean and the stand-
ard deviation of the amount received. Shih [13] studied the
optimal ordering schemes in a case where the proportion of
defective products in the accepted lots has a known proba-
bility distribution. The yield rate is thus between 0 and 1
and is assumed to be independent of the lot size. Similar
to Silver’s results he showed that the optimal order quantity
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depends only on the model parameters and the first two mo-
ments of the underlying yield distribution. As expected, the
optimal order quantity is greater than that of the certain yield
case, but it was less intuitive that the optimal lot size de-
creases when the variance of the yield rate distribution
increases. Noori and Keller [10] extended Silver’s model to
obtain an optimal production quantity when the amount of
products received at stores assumes probability distributions
such as uniform, normal and gamma. They showed that for
a uniform demand case the optimal ordering policy is in-
dependent of the yield distribution, but Rekik et al. [11]
found out that the Noori and Keller’s result is not always
valid for all system parameters. They identified several cases
defined by certain ranges of system parameters to investigate
the validity of Noori and Keller’s previous results. For the
detailed survey of random vyield literature, including ex-
clusive random yield models, Yano and Lee [17] is the most
popular reference.

Most of research presented above on the single-period in-
ventory problem dealt with solutions for the optimal size of
order which maximizes the expected total profits. But these
research have weakness due to the ‘flaw of average’ in solv-
ing the single-period inventory problem. To overcome this
‘flaw of average’ many researchers tried to consider risk
preferences, especially risk aversion of the decision maker.
Lau [7], Spulber [15], Bouakiz and Sobel [2], Eeckhoudt
et al. [5], Agrawal and Seshadri [1], Chen and Federgruen
[3], Seifert et al. [12], Chen et al. [4], Haksoz and Seshadri
[6]. Lau [7] examined newsvendor solutions which maximize
expected utility under stochastic demand or stochastic supply
situations. Eeckhoudt et al. [5] examined the risk and risk
aversion in a single-period inventory problem where demand
is stochastic while supply is deterministic. They show that
the optimal order quantity decreases as decision maker’s
risk-aversion increases hecause a lower order amount defi-
nitely reduces the inherent risks of the outcome. In Bouakiz
and Sobel [2], they explored the newsvendor problem with
the exponential utility and showed that a base-stock policy
is optimal when a multi-period newsvendor problem is opti-
mized with an exponential utility criterion. Agrawal and
Seshadri [1] also investigated the newsvendor problem with
the objective being maximizing the expected utility. In their
problem setting, both price and order quantity are decision
variables for the risk-averse retailer. In Kim et al. [8] they
introduced a constraint, so called ‘Value-at-Risk’, into the
given model to reflect the decision makers risk preferences.
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They investigated the various impacts of risk preference,
which is specified by parameters of ‘Value-at-Risk’, on the
optimal order quantity using relevant numerical examples.

In general, none of models described above do not link
the supply chain and logistics decision processes together.
They rather focus on the modeling of uncertain demand and
supply processes with or without risk attitude of the decision
maker. See Kim et al. [9] for the comprehensive analysis
of the impact of logistics quality on the optimal product or-
dering decision processes of the retailer. Their research is
similar to ours in that they assume k manufacturers to deliver
products to single retailer. But they did not consider the lo-
gistics cost variable in their model. Without explicitly in-
troducing the logistics cost variable it is not easy to analyze
the behavior of the decision maker on the various status of
the logistics investment.

In this paper, the topic of the uncertain supply situation
in the single period inventory problem setting has been com-
bined with the problem of determining the optimal logistics
investment on the assumption that the quality of logistics
can be improved via additional investment. This topic is dif-
ferent from that of Kim et al. [9] in that the logistics quality
factor is introduced as a decision variable representing the
number of transportation tools (or, trucks or vessels) while
Kim et al. [9] do not implicitly use the additional variable
but simply use the variables for the proportion of defective
products (TPDP) along the supply chain network.

3. Model and Analysis

We consider the product-ordering decisions of manu-
facturer who is facing uniform demand from it’s retail
customer. The retail customer purchases a single item of
products from this single manufacturer. All orders from this
retail customer is aggregate to the manufacturer’s a specific
production center then shipped to the retailer using trucks
(or vessels). The required number of trucks (or vessels),
which will be denoted by m, is determined based on the
reliability of the logistics operations of each channel. The
reason why the manufacture should consider delivering using
more than one truck (m > 1), even when one truck capacity
is enough to carry the whole shipment of size Q, is in the
reduction of the variability of the amount of defects among
the original shipped quantity from the manufacturer’s site.
We model this problem as a single period news-vendor prob-

lem where logistics cost is proportional to the number of
appointed trucks (or vessels).

The following notation will be used in the formulation
of our model :

Q : Total order quantity requested by retailer (the first de-
cision variable)

r : Unit retail price

m: Number of trucks to fulfill the delivery of Q products
from manufacture’s warehouse to the retailer’s DC
(the second decision variable)

h : Unit holding cost per period for unsold products at
the manufacturer’s warehouse

7 . Unit shortage cost for manufacturer per period per
product short

¢ : Demand rate of retailer’s DC per period, uniformly
distributed with parameters a and b, £~U(a, b), where
a<b

Pj: r.v. representing total proportion of defects among
shipped products using truck j, j = 1, -+, m

Y : r.v. representing total proportion of defects among Q
in transit, Y = (P1+P2+ .-+ Pm)/m

[ Logistics cost per each truck between DC and retailer.

We also make following assumptions for our model :

Al) The total order quantity is equally split into m trucks

A2) Pjs are i.i.d. with E[Pj]= p and Var[Pj] = ¢’

A3) There is no capacity limit for each truck

A4) When m trucks are used, each truck carries same
number of items

A5) Distribution of Pj and the size of shipment are in-
dependent amount of products

Even though we assume i.i.d. damage distribution for each
truck, our model can be easily extended to the non i.i.d case
by changing the logistics cost function. Suppose there are
three logistics channels available to the manufacturer, e.g.
trucks, rails, and planes from DC to the retailer. Then, the
i.i.d. damage distribution assumption is not realistic to repre-
sent the damage process from each channel and so we need
to use different unit logistics cost associated with each logistics
channel. To choose or not to choose each channel can be
modeled as decision variables by introducing binary variables.
It is an interesting future research problem. On the other
hand, in A3) we address the unlimited truck capacity. It sounds
unrealistic but in certain situation such as when the size of
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products are so small, i.e. the computer memory related products
or mobile phones, this assumption can be satisfied in general.

Using notations explained above, the manufacturer’s profit
function can be constructed as a function of decision varia-
bles, Q and m, respectively :

I(@Qm)=rmin[(1-Y)Q&-hl(1-Y)Q—¢"
—nl¢—(1-VQI"'—mp
=re—h[1-Y)Q—¢]"
—(r+mlE-0-VQI'— mpB

Therefore, the manufacturer’s expected profit can be ex-
pressed as

m)=rFEmin|[(1— Y)Q,f]— hE[(1— Y)Q— d+
—nE[¢-(1-Y)Q —mp
= ESR— FETIC— ETLC

EII(Q,
(1)

where ESR (Expected Sales Revenue), ETIC (Expected
Total Inventory Cost), and ETLC (Expected Total Logistics
Cost) are as following :

ESR= rFminl¢, (1—Y) Q)

=i [ et

ETIC=h / 1 / (W)Q[(l—y)Q—ﬂf(é)g(y)dﬁdy

+7rff

ETLC= mp.

y) QIf (€)g(y)dedy,

(1-ye

Under the assumption of uniformly distributed customer
demand, it is not too hard to show

1-y)Q
S o=

(1-yQ
S g

(1-y)Q—a
b—a ’

(1-y)*@
2(b—a)

so that expected profit simplifies to :

(h+r+m)((1— ) +0?/m)
2(b—a)

EI(Qm)=—

(1—,u) b(r+7)+ah
QT o T rrnin
(a+b)  a’h+b*(r+h)
2 2(b—a)
+ (1*;;)2 (b(r+7r)+ah)2
(1—p)?+o*/m 2(b—a)(h+r+m)
_m/@

)2

+r
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where . = EPj = EY, and ¢® = V Pj. The optimal order
quantity Q" represents the boundary value where an in-
creased order provides cost or benefit. And the optimal num-
ber of trucks m " represents the threshold value where using
an additional truck provides cost or benefit. In the following,
we drive the closed form solution which maximizes the re-
tailer’s expected profit as in (2). The result is stated in the
theorem 4.1 with the proof.

Theorem 4.1 The optimal solution (Q",m") to the prob-
lem (2) exists and unique. Furthermore

m=arg, o) ) max BI(Q,m),
* (1_/1) 0
@ (1—u)2+02/m* @
o_ blrtm)+ah - ,
where Q"= G th) is the optimal order quantity

in the conventional news-vendor problem when there exist
no damages occurring in the logistics operations (i.e.,
o r+a+h o’
1=V 20—a8 9T =)
the largest integer less than or equal to m.

,u=a=0),n~1 Z,LTA;LJ is

Proof : Firstly, we prove the existence and uniqueness
of the solution. Here, it suffices to show that the Hessian
matrix of EIT (@, m) is negative definite (i.e., to show
EIT (@ m) is a strictly concave function in both Q and m).
Consider the function

EIT (@ m), with the corresponding Hessian matrix :
d*EI(Q m) oEI(Q, m)
_ 8Q? aQom
9°EII(Q m) 9°EI(Q m)
aQpm om?
_ (r+h+7r)((1—,u)2+02/m) (r+h+m)o?
_ (b—a) (b—a)m?
(r+h+7r)02 B (r+h+ﬂ')02@2
(b—a)m2 (b—a)m3

To check the negative definiteness of this Hessian matrix,
we need to compute the determinants of the principal minors
of the Hessian matrix #, |H| and |H,| :

(r+h+ﬂ)((1—u)2+02/m) ~

‘}[1| == (b—a) ’
| 2°EI(Q.m) 82EH(Q,m)_(02EH(Q7m))
1 = 0Q* om> aQom

_ (1 —M)Q(r+h+7r)202
(b—a)’m?®

Q2
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and use the definition of the negative definiteness. In our
case, it is not difficult to show that |#;| > 0 and |#| > 0.
Therefore, the solution (Q",m") uniquely exists. Secondly, to
derive @  we can apply the first order condition to (2) to
get :

GEH(Q,m)_
R G
~ (h+r+m)((Q—p)*+0°/m)
(1(b_?) b(r+m)+ah
_ — r+m)+ta
N ot vt )
i (=p) b(r+m)+ah
~(Q I Ry — )
=0
(1—p)

It is clear to see that Q"= ———F~—— . Q" satis-
R T e
fies the first order condition shown in (3). Now, from the

first order condition of m on EI(Q m) we have :

o r+m+h

OFIT(Q,m) N
1(b—a)s (4)

om ~ (m— 1—p
2

Considering the discreteness of m" it is obvious that m"

=arg, _|~| 5|, max EI(Q",m) maximizes m = EII

(Q",m) QED.

To prove m" we can also use the logical intuition together
with the concavity property of EIT (@, m). If we increase
m to m+1 the first two components of (1) improve due to
the reduced variability representing the increased sales rev-
enue and decreased corresponding inventory costs. At the
same time the additional truck incurs the additional invest-
ment on the logistics operation which is equivalent to g.
Therefore m" should satisfy the following :

EI(Qm" —1)< EH(Qm") < EI(Qm" +1) (5)

In (5), at m=m" the benefit from the operational varia-
bility reduction surpasses the accompanying cost to appoint
the additional truck. Theorem 4.1 addresses that there exists
a optimal number of trucks which maximizes the manu-
facturer’s expected profit when the service provided by each

truck is not perfect to guarantee zero defect during delivery
process.

In the following section we conduct some numerical anal-
yses to draw useful managerial insights from the analytical
result derived in this section.

4. Computational Study
To further understand the implication of results from the
previous section, we consider an numerical example employ-

ing a variety of values of model parameters.

{Table 1> Parameter Values

Value

$50

$10

$30

100

150
02,03, 04,05
02,03, 04,05

$400, $800, $1200, $1600,

Parameter

Q|| =

m|a = |o|

<Table 1> shows the various values of the input parame-
ters that were considered in our numerical studies. In our
numerical studies, even though there is no capacity limit on
the truck, we found in certain cases that the expected profit
is larger when two or more trucks are used to deliver the
products to the retailer. This is because the increasement of
the profit due to the reduced variability from the trans-
portation operation, surpasses the additional investment cost,
i.e. cost of using additional trucks.

According to our numerical example, the increase in profit
using more than one truck ranges from 0% to over 1,188%.
The results using various parameter values exhibit very sim-
ilar pattern as shown in <Figure 1>~ <Figure 3>. The per-
centage columns in Figures represent the percentage increase
in manufacturer’s expected profit when manufacturer uses
more than one truck (channel). We used

Em(Q", m")— EI(Q, 1)l/EI(Q, 1) 100%

to compute those values where ¢, is the optimal order quantity
when m is fixed at 1.
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1ip=020=02 1io=0.2 B=400
B m* Q' ENQ'.m' ENg'1 Diff Diff o m' Q' EMQ'm'l ENQ 1 Diff Diff =
400 2 18034 4,851 4734 118 249 02 2 18034 4,851 4734 118 249
200 1 17504 434 4334 [1} 0.00% 02 2 20421 4689 4431 258 5.82%
1200 1 175.04 3934 3934 [1] 0.00% 04 2 23492 4446 3985 460 1153
1,600 1 175.04 3524 3534 [1] | 000~ 05 3 28249 4.082 3298 785 | 23.79%
| 2 p=0.3 0=03 (21 g=0.3. =800
L B lm | O nQ'mi | ENQL | Off | Diff % I m | Q| ENQmy | Diff Diff?s
400 3 20028 3954 2985 959 32485 02 2 17376 3408 245 7.76%
a0 2 19467 3074 2585 490 [ 1895° 03 2 13467 3074 490 | 1895%
1200 1 179.56 2185 2185 '] 0007 04 2 22042 2584 813 4593%
1600 1 17956 1785 1785 | 1] 0.00° 05 3 26568 1,856 1260 | 211 23%
3 =04, g=04 310-04, B-1200
B m' ENQ.m' ENg'l Diff Diff I m Q' Q' m' ENol Diff | Diff
400 4 22317 2786 216 2570 118849 0.2 2 16531 1784 1371 43 | 3016
800 3 21597 1453 184 1643 | 893 99% 03 2 18271 1254 533 720 13511%
100 [ 2 [ o 501 s [ l0m [ gssen 04 [ 2 | s s01 ST Y S T 23
1,600 2 | 20288 293 984 585 | 69617% 05 3 24524 590 - 2082 1492 T185°
- __ 4p=050=05 [ _4/0=05p=1600 ]
B m' Q' EMQ m" ENQ'l Diff | Diff [T m' Q' EnQ'm' | ENQA | Diff | Diff %
| 400 | S5 24797 1176 1274 4450 | 13592% 02 2 15559 35 - 497 | 533 107 10%
200 4 22805 629 3674 3,045 8288 03 2 | 1693 - 633 asm | s S5.06%
1200 3 22317 - 1937 4074 2138 | 5247% 04 2 184 06 1677 - 2838 | 1161 4091
1600 2 19837 - 3049 447 1425 | 31.85% 05 2 158 37 3045 - 4474 1425 31.85%
<Figure 1> Effects of Logistics Cost, B <Figure 2> Effects of Mean Damage Proportion, u
In <Figure 1>, we investigate the effects of logistics cost 11102 =400
) i X « ] m' Q EnQ'.m* ENQl Diff | Diff
3 on the optimal number of trucks to be used, which is m 02 z | 1m0 4551 4734 us | 249
032 2 | 17276 4,209 3563 645 | 1811
i i i 04 3 17167 3605 2171 1434 | 66,05
as well as on the increase in expected profit. In each graph, o 3 ALt
holding the mean u, and the standard deviation o of pro-
portion of defects from each truck, constant, we change the 1 & T T T
values of 3. From various scenarios considered, it is shown S EmEETT 1% Pt
. 04 2 18271 933 1120 120.06%
that the number of trucks to be used increases as the un- 05 3 | 18163 731 | 1894 | 259104
certainty in logistics operations becomes larger and larger.
. . 3 =04, f=1200
The benefits of employing more than one truck (m" > 1) o [m] o ENQ.m' ENQ'1 oif Diff
X ) ) i o b2 |1 | 318 3 |0 | ook
are getting bigger and bigger with more uncertainty in the 03 2 | 2042 1784 7 | 43 ] 3016
o . 04 2 20288 501 S84 | 1 085 185.82%
performance of logistics channel. But, as g3 increases these ~— ——25 e sl - 208 [ 167 [ eersh
benefits are becoming smaller and smaller due to the ex- TR T
pensive total logistics cost (i.e., m3). Consider the first graph L T T T -
. . . . .. 03 2 25217 232 - 204 36| 21419
in Figure. 1 where the level of uncertainty is set at the mini- 043 [ mear | i | aaw | o | v
. . . 05 2 19837 - 3049 - 4474 1425 | 31.85%
mum (i.e., (#1=0.2,0=0.2)). The only difference is when
3 = $400. In this case, the increase in profit by using addi- <Figure 3> Effects of Standard Deviation of Damage

tional truck is $518(= $400+$118), which is due to the re-
duced variability in logistics performance, bypasses the addi-
tional logistics cost, $400, by $118. The second column from
the right in <Figure 1>~ <Figure 3>, named ‘Diff.’, shows
the total increase in profit when more than one truck are
being used to carry products. Intuitively, one would expect
an increased logistics cost to lead to decreased order quanti-
ties, which is the case in <Figure 1>. In general, order quanti-
ties increase as y increases or as o increases.

The mean of damage proportion, u, is varying while the
standard deviation, o, and marginal logistics cost are fixed
in <Figure 2>. As shown from all four graphs, it is clear
to see that the manufacturer’s expected profits are always

Proportion, o

greater when manufacturer deploys more than single truck
and the marginal profit increase is becoming larger and larger
as the uncertainties presented in the logistics service is get-
ting bigger and bigger. Increase in p will lead both the num-
ber of trucks to be used and the order quantities to increase.

Finally, in <Figure 3> the standard deviation is varying
while the mean, p, and the marginal logistics cost, 3 are
held at constant. As similar to the result in <Figure 2> the
increase in o will lead to increased m" and decreased Q.
Benefits from using more than one truck are most significant
when p and g are set at minimum (x = 0.2, 3 = 400).
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5. Conclusion

In this paper we have reviewed the manufacturer’s prob-
lem of seeking the optimal amount of delivery quantities to
meet the retailer’s stochastic demand as well as the optimal
number of trucks to deliver products from the manufacturer’s
warehouse to retailer’s distribution center. where the retailer’s
demand is assumed to follow the simple uniform distribution.
From our study we showed that there always exist the optimal
solution to this problem. And in certain cases where the quality
of transportation process is not perfect the manufacturer is
better off to invest on achieving better transportation quality
by adopting multiple trucks to fulfill the delivery mission.
It will be interesting future research topic to consider when
the manufacturer has to ship to multiple distribution centers
of retailer.
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