
Journal of the Society of Korea Industrial and Systems Engineering
Vol. 35, No. 2, pp.173—180, June 2012.

충분히 이른 작업의 수를 최대화시키는 확률적 스케줄링 문제

최재 *․김흥규**†

*동부CNI 연구소
**단국 학교 경 학부

Stochastic Scheduling Problems for Maximizing
the Number of Early Enough Jobs

Jae Young Choi*․Heung-Kyu Kim**†

*R&D Center, Dongbu CNI
**School of Business, Dankook University

이 논문에서는 작업의 처리시간이 임의의 확률분포를 따르고 작업의 납기일이 작업마다 별개인 상황에서의 단일

기계 스 링문제에 하여 살펴본다. 이 때 충분히 이른 작업의 수를 최 화시키는 데에 심을 둔다. 이러한 스
링문제를 풀기 한 두 가지 알고리즘, 즉 이진정수계획모형과 스 링 규칙을 제안한다. 여기서 제안하는 스
링 규칙은 처리시간과 납기일이 확정 인 경우에 지연작업의 수를 최소화시켜주는 스 링을 제공하는 기존

알고리즘을 처리시간과 납기일이 확률 인 경우로 확장한 것이다. 다음으로 이진정수계획모형과 스 링규칙을 성

과측면에서 비교한다. 그 결과 부분의 경우에 스 링 규칙이 이진정수계획모형과 거의 같은 스 을 제공할

뿐만 아니라 컴퓨터자원을 매우 게 소모한다.

Keywords：Stochastic Scheduling, Integer Programming, Scheduling Rule, Number of Early Enough Jobs

1. Introduction1)

In this paper, single machine stochastic scheduling prob-
lems are considered when processing times follow arbitrary
distributions and due dates are distinct. There are many in-
stances where the penalty for being late is the same regard-
less of how late it may be. For instance, any delay in the
completion of any tasks required for a space launch will
make the launch aborted. When problems fit this description,
it is difficult to find an optimal schedule that maximizes the
expected number of early jobs even if all the due dates are
exponentially distributed. The problems of maximizing the

expected number of early jobs have been investigated in
many literatures. For concise review, see Choi and Kim [3].
Instead of maximizing the expected number of early jobs,
a practitioner might be interested in maximizing the number
of early enough jobs given a threshold . A job is early
enough if the probability of being early is greater than or
equal to the threshold This alternative objective might
prove more amenable to efficient solutions.

Suppose there are jobs to be scheduled. Each job ,
 … , has its own processing time which follows
any non-negative valued distribution, and due date which
follows an exponential distribution with mean . In addi-

논문 수일：2012년 03월 23일 논문수정일：2012년 06월 06일 게재확정일：2012년 06월 11일

†교신 자 heungkyu@dankook.ac.kr

최재영․김흥규174

tion, suppose each processing time is independent from
the other processing times , ≠. The objective is to max-
imize the number of early enough jobs.

This type of problems is considered in Balut [1], Katoh
and Ibaraki [5], and Kise and Ibaraki [6]. In Balut [1], it
is formulated as a threshold-constrained problem where the
processing times are assumed to follow normal distributions
and due dates are assumed to be distinct but deterministic.
In the formulation, jobs are ordered in the increasing order
of due dates, i.e., ≤ ≤…≤ . The threshold-con-
strained formulation is as follows.

 ≤≥ …
 …

(1)

where if job is included in the schedule and
otherwise. By the threshold-constraints, it is assured that if
a job is included in the schedule, the probability of the job
being early is greater than or equal to the threshold .

Unfortunately, the above formulation has some drawbacks.
First, it is implicitly assumed by the threshold-constraints that
the jobs selected for processing are processed in the increas-
ing order of due dates. There is no discussion on this in
Balut [1]. Second, the processing times are assumed to fol-
low normal distributions while processing times can not take
negative values. Finally, even if the jobs are not selected
for processing, these jobs must satisfy the threshold-
constraints. However, this drawback can be easily corrected
by changing the right-hand sides of the threshold-constraints
from to .

Using the above formulation, a polynomial time algorithm
is proposed in Balut [1]. However, there shows a counter-
example for which the algorithm is unable to find an optimal
schedule in Kise and Ibaraki [6]. Moreover, it is also shown
that the problem reduces to a knapsack problem and thus
the problem is NP-Complete. For a special case where
 implies ≤ , a polynomial time
algorithm is proposed in Kise et al. [7].

The rest of this paper is organized as follows. In Section
2, it is shown that a lemma proposed in Jackson [4] still
holds if the due dates are exponentially distributed. Utilizing
this lemma, it is shown that, in optimal schedules, the jobs
selected for processing are processed in the increasing order

of expected due dates. In Section 3, a binary integer program-
ming formulation based on the characteristics of optimal
schedules is proposed. A new scheduling rule, based on an
algorithm in Moore [8], which solves the problem in some
cases, is also proposed. In Section 4, the binary integer pro-
gramming formulation is compared with the new scheduling
rule in terms of performances. Final remarks are addressed
in Section 5.

2. Characteristics of Optimal Schedules

A deterministic scheduling problem is investigated in
Jackson [4]. In Jackson [4], it is shown that the earliest due
date schedule has no late jobs if there exists a schedule having
no late jobs. In our setting where processing times are repre-
sented by any independently non-negative valued random vari-
ables and due dates are represented by independently and
exponentially distributed random variables, the lemma in
Jackson [3] still holds.

Lemma 1
Let , , and be the processing time, due date,

and completion time for job in schedule , respectively.
Given a set of jobs … with any independently
non-negative valued processing times and independently ex-
ponential due dates, there exists a schedule having no late
jobs if and only if there are no late jobs in the schedule
obtained by ordering the jobs in the increasing order of ex-
pected due dates.

Proof
It is sufficient to show that for a schedule having no

late jobs, the jobs in schedule can be reordered in the
increasing order of expected due dates. Suppose that, in
schedule there are two adjacent jobs and where job
 is processed prior to job and ≤ , i.e., job has a
stochastically smaller due date than job does (≤).
Let denote the schedule. The assumption
implies

≤
∈ ≤

∈

≥

충분히 이른 작업의 수를 최대화시키는 확률적 스케줄링 문제 175

and

≤
∈ ≤

∈

≥

where ≤. By interchanging the two jobs
and , the probability of job being early is

∈
 ≥

∈
 ≥ since ≤ . For job , the probability of

being early after the interchange is
∈
 ≥

∈

≥ since ≤≥≤ for any non-negative
valued random variable .

Although the lemma in Jackson [4] deals with the sched-
ules without late jobs, it provides a basis for building the
characteristics of optimal schedules. This section mimics the
theoretical results in Moore [8]. In a deterministic setting,
it is shown that, in an optimal schedule, early jobs are proc-
essed in the increasing order of due dates.

For a given schedule , two ordered sets, and of
early enough and late enough jobs, respectively, are defined
as ≤≥ and ≤
, where, of course, a job is late enough if the proba-
bility of being early is less than the threshold . The ele-
ments in and are ordered in the increasing order of
expected due dates in schedule .

Lemma 2
Any optimal schedule is equivalent to schedule

 in terms of the number of late enough jobs.

Proof
Let for simplicity where is the th

job in schedule . Suppose an optimal schedule is not
in the form of . Then, there must be at least two ad-
jacent jobs, and in for ≥ such that
 ≤ and ≤≥ . If we
interchange and , we have new completion
times ′ and ′
with . In the new schedule, the probabilities of jobs
 and being early, respectively, are

′ ≤
 ≤
≤ ≤

′ ≤
 ≤
≥ ≤
≥

Thus, repeated interchanges in this manner to produce an
 schedule does not change the number of late enough
jobs.

Let be the set of jobs in ordered in the increasing
order of expected due dates. Then, the following corollary
must hold.

Corollary 1
A schedule is equivalent to schedule in

terms of the number of late enough jobs.

Corollary 1 plays an important role in our problem
formulation. The only thing left to be considered is to decide
which jobs should be in the set of early enough jobs since,
in an optimal schedule, early enough jobs are processed in
the increasing order of expected due dates.

3. Formulation and Scheduling Rule

Formulation In the following, jobs are indexed in increas-
ing order of their expected due dates, i.e., ≥ ≥…≥ .
Let … denote the set of all the jobs. The key
idea of Corollary 1 is captured in the following formulation
which selects jobs to be early enough in an optimal schedule.

 ≤≥ ∈
 ∈

(2)

Note that problem formulation (2) differs from problem
formulation (1) in that, in problem formulation (2), indication
variable is added on the right-hand side of the thresh-
old-constraints in problem formation (1). It turns out that
the added indication variable does not need to be shown

최재영․김흥규176

in Lemma 3 below. Due to the exponential nature of the
due dates, each constraint in formulation (2) above can be

simplified as a product form

 ≥ , where again

 ≤. If we take logarithms on both sides of
those constraints, problem formulation (2) becomes a binary
integer programming formulation as follows.

 ≤ ∈
 ∈

(3)

where ≤ and .
Let us consider another binary integer programming for-

mulation that is very similar to problem formulation (3).

 ≤ ∈
 ∈

(4)

The only thing that makes problem formulation (4) differ
from problem formulation (3) is no existence of in
each constraint in problem formulation (4). However, it can
be shown that an optimal schedule to problem formulation
(4) is also an optimal schedule to problem formulation (3).

Lemma 3
An optimal schedule to problem formulation (4) is also

an optimal schedule to problem formulation (3).

Proof
Suppose is an optimal schedule to problem formulation

(4) and not optimal to problem formulation (3). Let
∈ . Then, there must be at least one job such

that and ∉, but satisfies all the constraints in

problem formulation (3). Therefore, we have

 ≤ , which means that, by making , we have
the corresponding constraint in problem formulation (4) also
satisfied. This contradicts the assumption that is optimal.

Order Invariant Processing Times Problem formulation (4)

can be expressed in a matrix form as follows.

 ≤

where is a row vector of ones and the elements of the
lower triangular matrix are ≤ for
≥ and 0 otherwise.

Indeed problem formulation (4) can be regarded as a capi-
tal allocation problem, which does not have a polynomial
time algorithm unless it can be solved by a linear program-
ming relaxation. For details, see Nemhauser and Ullmann
[9]. However, for a special case where is ‘order invariant’,
the problem can be solved efficiently with the complexity
of sorting algorithms. Before we propose an algorithm, we
define ‘order invariant’.

D efinition 1
A matrix is order invariant if implies

 for all , , and .

If matrix is order invariant, the scheduling rule, shown
in <Figure 1>, can be used to find an optimal schedule to
maximize the number of early enough jobs in polynomial
time .

Step 1 : Sort the jobs in the increasing order of expected due dates,
i.e., in the decreasing order of .

Step 2 : Set and . Set .
Step 3 : If

∈
 , or equivalently,

∈
 , then find a job

such that ∈ or ∈ . Set
and ∪.

Step 4 : . If , terminate. Otherwise, ∪, and return
to Step 3.

<Figure 1> New Scheduling Rule

Theorem 1
If is order invariant, then the new scheduling rule guar-

antees an optimal schedule to problem formulation (4).

Proof
It is sufficient to show that if a job is found in Step

3, then ∈ for some optimal schedule for the jobs
 … in the current sequence. Consider an optimal sched-
ule of the form in the current sequence. If ∈ ,
we are done. Hence, assume ∈ and is of the form :
 … …

충분히 이른 작업의 수를 최대화시키는 확률적 스케줄링 문제 177

and

 … …
where

 .

Thus,
∈…

 is minimal over the class of all subsets

of jobs from the current sequence having values less than
or equal to . Hence, since job is late enough in the se-
quence … , it will be late enough in all due date
ordered sequences in which it is the th job. But
is early in the schedule and therefore must be strictly
less than . Further

 … ∩ … ∅,

since , … and , … .
Hence, for a member of … to be on time in the
schedule , it must be a member of … .
Consequently, there are jobs in the set … that are
members of the set in the schedule since
. Another optimal schedule can now be found
by replacing the initial sequence … in the schedule
 with the first jobs from the set … . The
job is now a member of for the optimal schedule

 .

What kind of processing times make order invariant,
or equivalently, what conditions for processing times are re-
quired, for the algorithm to work remains an open question.
To deal with this question, we should discuss the concept
of stochastic ordering first.

A random variable is said to be stochastically less than or
equal to a random variable in an increasingly concave
ordering sense if and only if ∅ ≤ ∅ for all
the increasingly concave functions ∅⋅ . This relationship
is denoted by ≤ . The increasingly concave ordering
is weaker than stochastic ordering, that is, if ≤ , then
 ≤ . For details, see Chang et al. [2] or Ross [9].

The condition of ‘order invariant’ is automatically satisfied
when all the processing times can be ordered in an increa-
singly concave ordering sense and due dates have concave
distributions as when they are exponentially distributed.

Lemma 4
If ≤ , then ≤≥ ≤ for any

non-negative valued random variable whose distribution
function, , is concave.

Proof

≤

∞

 , where

 is the probability density function of . Since
is an increasingly concave function and ≤ , we have

∞

≤

∞

. This leads to

≤≥ ≤.

Note that an exponential random variable has a concave
distribution function. Therefore, when all the processing
times can be ordered in an increasingly concave ordering
sense and due dates are exponentially distributed, the corre-
sponding matrix becomes order invariant.

Arbitrary Processing Times The scheduling rule in <Figure
1> cannot be applied to a problem with general processing
times. This is because it can not be guaranteed that the corre-
sponding is order invariant. It can be shown that the proba-
bility of being early for any non-negative valued random varia-
ble , ≤, is decreasingly convex in , where
 is an exponential random variable with rate .

Proposition 1
The earliness probability ≤ is decreasingly

convex in for any non-negative valued random variable .

Proof
Let denote the probability density function of and

 denote the Laplace-Stieltjes transform of . Since
≤ , the probability of being early
is the Laplace-Stieltjes transform of at or equivalently
the Laplace transform of its probability density function
 . It is known that the inverse of the first derivative of
 is and the inverse of the second derivative
of is . Hence, the first derivative of the proba-
bility is the Laplace transform of which is negative,
and the second derivative of the probability is the Laplace
transform of which is positive. This completes the
proof.

최재영․김흥규178

of
Job

Min.
Surv.

Avg. Early Jobs Avg. CPU Times

Binary
Integer Prog.

Sched.
Rule

Binary
Integer Prog.

Sched.
Rule

10
10
10
10
10
10

0.50
0.60
0.70
0.80
0.90
0.95

4.5200
5.2400
6.2733
7.5733
8.9933
9.8267

 4.5200
 5.2400
 6.2733
 7.5733
 8.9933
 9.8267

0.0153
0.0163
0.0157
0.0140
0.0120
0.0053

0.0000
0.0003
0.0000
0.0000
0.0000
0.0000

Avg. 7.0711 7.0711 0.0131 0.0001
30
30
30
30
30
30

0.50
0.60
0.70
0.80
0.90
0.95

9.1400
11.5133
13.2200
16.4667
23.0867
27.1333

 9.1400
11.5133
13.2200
16.4667
23.0867
27.1333

0.1033
0.1340
0.1597
0.1510
0.0967
0.0443

0.0000
0.0003
0.0007
0.0000
0.0007
0.0003

Avg. 16.7600 16.7600 0.1148 0.0003
50
50
50
50
50
50

0.50
0.60
0.70
0.80
0.90
0.95

13.1867
15.1400
19.1400
23.9133
33.0200
42.4733

13.1867
15.1400
19.1400
23.9133
33.0200
42.4733

0.2923
0.3200
0.3903
0.3930
0.3000
0.1457

0.0007
0.0023
0.0007
0.0017
0.0023
0.0007

Avg. 24.4789 24.4789 0.3069 0.0014
70
70
70
70
70
70

0.50
0.60
0.70
0.80
0.90
0.95

15.9600
19.8000
21.9933
28.5133
39.8267
54.7333

15.9600
19.8000
21.9867
28.5133
39.8267
54.7333

0.5630
0.6883
0.8107
0.8990
0.7113
0.3850

0.0017
0.0033
0.0020
0.0010
0.0027
0.0027

Avg. 30.1378 30.1367 0.6762 0.0022
90
90
90
90
90
90

0.50
0.60
0.70
0.80
0.90
0.95

20.0733
21.6467
26.8467
33.5333
47.5467
65.5867

20.0733
21.6467
26.8400
33.5333
47.5467
65.5867

0.8467
1.1863
1.5040
1.7393
1.6663
0.8703

0.0023
0.0023
0.0043
0.0013
0.0040
0.0060

Avg. 35.8722 35.8711 1.3022 0.0034
100
100
100
100
100
100

0.50
0.60
0.70
0.80
0.90
0.95

20.3533
23.4133
27.3267
34.8800
52.3333
71.2867

20.3533
23.4133
27.3267
34.8800
52.3333
71.2867

1.1857
1.4367
1.8953
2.1163
2.0040
1.7427

0.0047
0.0040
0.0027
0.0037
0.0037
0.0063

Avg. 38.2656 38.2656 1.7301 0.0042
Total Avg. 25.4309 25.4306 0.6906 0.0019

<Table 1> Number of Early Enough JobsFrom the fact that earliness probability ≤ is
convex in , it can be deduced that for any two non-negative
random variables, and , there is at most one ′,
′ ∞, such that

′
′ . This, in turn, means

that the order of the probabilities can be reversed at some
rate . This fact makes it impossible to guarantee order in-
variant property for general processing times. Hence, in this
case, we need to solve problem formulation (4) instead.

4. Computational Experiments

So far, two methods, for maximizing the number of early
enough jobs when processing times are arbitrary distributed
and due dates are exponentially distributed, are considered.
One is a binary integer programming formulation, which
guarantees an optimal solution, however, is computationally
infeasible for problems of moderate sizes. The other is a
scheduling rule, which guarantees an optimal solution only
in special cases, however, is computationally feasible for
problems of any sizes.

In this section, the two methods are compared with each
other in terms of performances when either job processing
times or due dates are generally distributed. Earlang random
variables for either processsing times or due dates are chosen
because they are non-negative valued and can have many
different shapes with varying two parameters.

CPLEX is used for solving the binary integer program.
Both methods are programmed in ANSI C programming lan-
guage and run on Sun Unix Systems.

4.1 Number of Early Enough Jobs

Each job is assumed to have a processing time which
follows an Erlang distribution with phases and a phase
rate. A set of Erlang random variables is not always order
invariant. If a set of processing times are not order invariant,
the binary integer programming formulation in Section 3
should be employed to obtain an optimal schedule.

D ata Preparation In this experiment, the values for two
factors, the number of jobs and the minimum survivability
among the jobs, varied. The survivability of job is defined
as the probability of being early if the job is processed first,
i.e., ≤. It is handy to make up data sets accord-
ing to their minimum survivabilities in order for us to easily

look at the behavior of the two approaches based on each
level of minimum survivability.

The number of jobs varied over 10, 30, 50, 70, 90, and
100. The minimum survivability varied over 0.5, 0.6, 0.7,
0.8, 0.9, and 0.95. For each combination of job size and
minimum survivability, 30 random samples from Erlang pro-
cessing times and exponential due dates are generated. The
number of phases for an Erlang random variable is randomly
drawn from a discrete uniform distribution . The rate

충분히 이른 작업의 수를 최대화시키는 확률적 스케줄링 문제 179

of each phase is also randomly generated from a uniform
distribution . The value of survivability for a given
job is randomly drawn from a uniform distribution ′ ,
where ′ is the specified minimum survivability. Once para-
meters for the processing times and survivability are given,
the rate of the exponentially distributed random variable
corresponding to each expected due date can be automatically
determined. That is, for an Erlang random variable and an
exponential due date , can be easily determined for

a given survivability from ≤

.

Results There are 30 random samples generated for each
combination of job size and minimum survivability as pre-
viously described. For each data set, the performance of the
binary integer programming formulation is compared to that
of the scheduling rule with various thresholds, 0.5, 0.6, 0.7,
0.8, and 0.9. The average number of early jobs and the aver-
age CPU times of the binary integer programming for-
mulation versus those of the scheduling rule are shown in
<Table 1>. There is only a little difference (< 0.001%) in
terms of the maximum number of early enough jobs, while
CPU times of the binary integer programming formulation
surpass those of the scheduling rule. Thus, the scheduling
rule achieves near optimality in only a fraction of the time.

4.2 Expected Number of Early Jobs

Even if due dates are exponentially distributed, there is
no known solution method to get the maximum expected
number of early jobs except for total enumeration when proc-
essing times have general distributions. The binary integer
programming formulation proposed in this paper is used to
approximate the maximum expected number of early jobs.
The main idea is that the binary integer programming for-
mulation is solved for a given set of jobs with many threshold
points, for example, 100 points between 0.01 and 0.99. For
each threshold point, early enough jobs will be selected and
the selected jobs will be processed in the increasing order
of due dates. The late jobs, i.e., the jobs not selected, will
be processed in a manner of ‘shortest processing time’ first
after the early enough jobs are processed. Once the sequence
is determined, the expected number of early jobs is examined
for the given threshold point. The sequence is obtained that
gives the maximum expected number of early jobs through-

out the entire threshold points.
The data sets in the previous subsection are used again

for comparing the performances of the binary integer pro-
gramming formulation to those of the scheduling rule. The
scheduling rule runs much faster (9.97 times on the average)
than the binary integer programming formulation while the
performances of approximation with the scheduling rule are
99.91% of those of the binary integer programming for-
mulation on average. The results are shown in <Table 2>.

<Table 2> Expected Number of Early Jobs

of
Job

Min.
Surv.

Avg. Early Jobs Avg. CPU Times

Binary
Integer Prog.

Sched.
Rule

Binary
Integer Prog.

Sched.
Rule

10
10
10
10
10
10

0.50
0.60
0.70
0.80
0.90
0.95

5.0365
5.7031
6.5440
7.4927
8.6046
9.3165

5.0330
5.6997
6.5430
7.4952
8.6046
9.3171

0.3227
0.3057
0.2713
0.2490
0.2103
0.1877

0.2770
0.2740
0.2720
0.2710
0.2673
0.2670

Avg. 7.1162 7.1154 0.2578 0.2714
30
30
30
30
30
30

0.50
0.60
0.70
0.80
0.90
0.95

9.1670
11.0818
12.6612
15.7160
21.2300
25.1553

9.1270
11.0568
12.6391
15.6871
21.2361
25.1572

2.4373
2.3797
2.2277
1.7767
1.1967
0.7870

0.5000
0.4620
0.4413
0.4083
0.3663
0.3467

Avg. 15.8352 15.8172 1.8009 0.4208
50
50
50
50
50
50

0.50
0.60
0.70
0.80
0.90
0.95

12.5241
14.2358
17.5487
21.4537
29.5748
38.3053

12.5052
14.1934
17.5486
21.3969
29.5756
38.3063

6.9377
6.5213
5.9150
5.1980
3.5753
2.3273

0.9940
0.9083
0.7960
0.7183
0.5970
0.5040

Avg. 22.2737 22.2543 5.0791 0.7529
70
70
70
70
70
70

0.50
0.60
0.70
0.80
0.90
0.95

14.9072
17.9152
19.7764
25.3963
34.8381
48.3340

14.8775
17.8629
19.7338
25.3863
34.8052
48.3339

14.3180
14.9523
15.0777
12.5207
 9.0267
 6.2100

1.8317
1.6327
1.5290
1.2730
1.0053
0.8060

Avg. 26.8612 26.8333 12.0176 1.3463
90
90
90
90
90
90

0.50
0.60
0.70
0.80
0.90
0.95

17.9018
19.4192
23.6239
29.4188
41.0114
56.8936

17.8608
19.3918
23.5877
29.3780
40.9683
56.8946

26.0430
26.0847
28.6757
24.4007
17.4287
12.4313

2.8550
2.7967
2.4357
2.0683
1.5663
1.2197

Avg. 31.3781 31.3469 22.5107 2.1570
100
100
100
100
100
100

0.50
0.60
0.70
0.80
0.90
0.95

18.2140
20.8718
24.0271
30.3401
44.4385
60.9822

18.2255
20.8525
23.9963
30.2796
44.4130
60.9773

37.1717
36.5447
40.9517
40.0807
32.2067
20.3840

3.6803
3.3907
3.0857
2.6647
1.8997
1.4537

Avg. 33.1456 33.1240 34.5566 2.6958
Total Avg. 22.7684 22.7485 12.7038 1.2740

최재영․김흥규180

5. Final Remarks

After the failure of the algorithms in Balut [1] and Kise
and Ibaraki [6] for the threshold-constrained stochastic sched-
uling problem, the problem has never been addressed so far
to the best of our knowledge, which is confirmed by the
remarks in Choi and Kim [3] and in Sterna [11]. In this
paper, it is shown that the lemma in Jackson [4] still holds
in a stochastic setting where all the due dates are exponentially
distributed. Based on this observation, the binary integer pro-
gramming formulation for maximizing the number of early
enough jobs is derived. Moreover, a new scheduling rule is
developed for obtaining a set of early enough jobs to be
processed for a given threshold. It is also shown that if process-
ing times meet order invariant condition, the scheduling rule
finds optimal schedules. Otherwise, the problem can be solved
by the binary integer programming formulation.

When processing times are Erlang distributed, the schedul-
ing rule is compared to the binary integer programming
formulation. The scheduling rule runs much faster than the
binary integer programming formulation while there is al-
most no loss in solution quality in terms of the average num-
ber of early jobs.

The binary integer programming formulation is also ap-
plied to approximate the maximum expected number of early
jobs. Just like the previous result, the scheduling rule runs
faster while its performance is comparable to the binary in-
teger programming formulation.

References

[1] Balut, S. J.; “Scheduling to Minimize the Number of Late
Jobs When Set-Up and Processing Times are Uncertain,”
Management Science, 19 : 1283-1288, 1973.

[2] Chang, C.-S., Shanthikumar, J. G., and Yao, D. D.;
“Stochastic Convexity and Stochastic Majorization,”
Stochastic Modeling and Analysis of Manufacturing
Systems, Springer-Verlag, New York, 1994.

[3] Choi, J. and Kim, H.; “A Review on Scheduling Problems
for Minimizing the Number of Late Jobs,” Korean
Production and Operations Management Society, 22 :
159-175, 2011.

[4] Jackson, J. R.; “Scheduling a Production Line to
Minimize Maximum Tardiness,” Research Report, 43 :
UCLA, 1955.

[5] Katoh, N. and Ibaraki, T.; “A Polynomial Time Algo-
rithm for A Chance-Constrained Single Machine Sche-
duling Problem,” Operations Research Letters, 2 : 62-
65, 1983.

[6] Kise, H. and Ibaraki, T.; “On Balut’s Algorithm and
NP-Completeness for a Chance-Constrained Scheduling
Problem,” Management Science, 29 : 384-388, 1983.

[7] Kise, H., Shiomi, A., Uno, M., and Chao, D.-S.; “An
Efficient Algorithm for a Chance-Constrained Schedu-
ling Problem,” J. Operations Res. Soc. Japan, 25, 193-
203, 1982.

[8] Moore, M. J.; “An N Job, One Machine Sequencing
Algorithm for Minimizing the Number of Late Jobs,”
Management Science, 15 : 102-109, 1968.

[9] Nemhauser, G. L. and Ullmann Z.; “A Note on the
Generalized Lagrange Multiplier Solution to an Integer
Programming Problem,” Operations Research, 16, 450-
453, 1968.

[10] Ross, S. M.; Stochastic Processes, John Wiley & Sons,
second edition, 1996.

[11] Sterna, M.; Late work scheduling in shop systems,
Publishing House of Poznan University of Technology,
2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

