실내 환경에서 모서리 특징을 이용한 시각 집중 기반의 SLAM

Visual-Attention Using Corner Feature Based SLAM in Indoor Environment

  • 신용민 (한양대학교 지능형로봇학과) ;
  • 이주호 (한양대학교 전자컴퓨터통신공학과) ;
  • 서일홍 (한양대학교 컴퓨터공학부) ;
  • 최병욱 (한양대학교 컴퓨터공학부)
  • Shin, Yong-Min (Department of Intelligent Robot Engineering, Hanyang University) ;
  • Yi, Chu-Ho (Division of Electrical Computer Engineering, Hanyang University) ;
  • Suh, Il-Hong (Collage of Information and Communications, Hanyang University) ;
  • Choi, Byung-Uk (Collage of Information and Communications, Hanyang University)
  • 투고 : 2011.09.09
  • 심사 : 2012.06.07
  • 발행 : 2012.07.25

초록

단일 카메라 기반의 SLAM(Simultaneous Localization and Mapping)을 성공적으로 수행하기 위해서는 표식 선택이 매우 중요하다. 특히, 미지의 환경에서는 표식에 대한 사정정보가 없기 때문에 표식을 자동 선택하는 기술이 필요하다. 본 논문에서는 표식을 자동 선택하기 위해 인간의 시각 집중 방식을 모델링한 시각 집중 시스템을 이용한다. 기존의 시각 집중 시스템에서 윤곽선(Edge)는 시각 집중을 위한 중요한 요소 중 하나이다. 하지만 복잡한 실내 환경에서 윤곽선의 응답을 사용할 경우 정규화 연산으로 인해 정보가 많은 복잡한 영역의 윤곽선에 대한 응답은 낮아지고 특징이 없는 평면이나 평면들 간의 경계에서 높은 값을 가지게 된다. 또한 네 방향에 대한 응답 값을 사용하기 때문에 특징의 차원수가 증가해서 연산량도 증가한다. 본 논문에서는 앞에서 언급한 문제점들을 해결하기 위해 모서리 특징의 사용을 제안한다. 모서리 특징을 사용함으로써 정보가 많은 복잡한 영역을 우선 집중시켜 데이터 연관(Data association)의 정확도도 높일 수 있다. 최종적으로는 코너특징을 사용한 시각 집중 시스템을 이용함으로써 기존 방식보다 SLAM 결과가 향상 된다는 것을 실험으로 보이도록 하겠다.

The landmark selection is crucial to successful perform in SLAM(Simultaneous Localization and Mapping) with a mono camera. Especially, in unknown environment, automatic landmark selection is needed since there is no advance information about landmark. In this paper, proposed visual attention system which modeled human's vision system will be used in order to select landmark automatically. The edge feature is one of the most important element for attention in previous visual attention system. However, when the edge feature is used in complicated indoor area, the response of complicated area disappears, and between flat surfaces are getting higher. Also, computation cost increases occurs due to the growth of the dimensionality since it uses the responses for 4 directions. This paper suggests to use a corner feature in order to solve or prevent the problems mentioned above. Using a corner feature can also increase the accuracy of data association by concentrating on area which is more complicated and informative in indoor environments. Finally, this paper will prove that visual attention system based on corner feature can be more effective in SLAM compared to previous method by experiment.

키워드

참고문헌

  1. D. Lowe, "Object recognition from local scale-invariant features," Proceedings of the International Conference on Computer Vision. 2. pp. 1150-1157, 1999.
  2. H. Bay, A, Ess, T. Tuytelaars, and L.V. Gool, "Speeded-Up Robust Features (SURF)," Computer Vision and Image Understanding vol.110, pp. 346-359, 2008. https://doi.org/10.1016/j.cviu.2007.09.014
  3. C. Harris and M. Stephens, "A combined corner and edge detector," Proceedings of the 4th Alvey Vision Conference, pp. 147-151, 1988.
  4. L. Itti, C. Koch, and E. Niebur, "Model of saliency based visual attention for rapid scene analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI), pp. 1254-1259, 1998.
  5. J. Daugman, "Two-dimensional spectral analysis of cortical receptive field profiles," Vision Res. 20 (10), pp. 847-856, 1980. https://doi.org/10.1016/0042-6989(80)90065-6
  6. A. Davison, "Mobile Robot Navigation Using Active Vision," PhD thesis, University of Oxford, UK, 1999.
  7. A. Argyros, C. Bekris, and S. Orphanoudakis, "Robot homing based on corner tracking in a sequence of panoramic images," Computer Vision and Pattern Recognition Conference (CVPR), pp. 11-13, 2001.
  8. RAWSEEDS: Robotics Advancement through Web-publishing of Sensorial and Elaborated Extensive Data Sets, "Bicocca_2009-02-25b," http://www.rawseeds.org/rs/capture_sessions/vie w/5, 2009.
  9. S. Thrun, W. Burgard, and D. Fox, Probabilistic ROBOTICS, MIT Press, 2006.
  10. S. Frintrop, "VOCUS: A Visual Attention System for Object Detection and Goal-directed Search," Phd thesis, University of Bonn, 2006.
  11. S. Frintrop, Maria Klodt and Erich Rome, "A Real-time Visual Attention System Using Integral Images," in Proc. of the 5th International Conference on Computer Vision Systems (ICVS 2007), 2007.
  12. J. Harel, C. Koch, and P. Perona. "Graph-based visual saliency," Advances in Neural Information Processing Systems, 19, pp. 545-552, 2007.
  13. C. Siagian and L. Itti, "Biologically Inspired Mobile Robot Vision Localization," IEEE Transactions on Robotics, Vol. 25, No. 4, pp. 861-873, 2009. https://doi.org/10.1109/TRO.2009.2022424
  14. C. Siagian and L. Itti, "Rapid biologicallyinspired scene classification using features shared with visual attention," IEEE Trans. Pattern Anal. Mach. Intell,pp. 300-312, 2007.
  15. S. Frintrop and P. Jensfelt, "Attentional Landmarks and Active Gaze Control for Visual SLAM," IEEE Transactions on Robotics, Special Issue on Visual SLAM, vol. 24, no. 5, Oct. 2008.
  16. S. Frintrop, P. Jensfelt, and H. Christensen, "Attentional Landmark Selection for Visual SLAM," Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'06), 2006.
  17. Y.J. LEE, "Indoor SLAM Using Entropy-based Visual Saliency and Outdoor SLAM Using Rotation Invariant Descriptors of Salient Regions," PhD thesis, Korea University, 2011.
  18. S. Engel, X. Zhang, and B. Wandell, "Colour tuning in human visual cortex measured with functional magnetic resonance imaging," Nature, vol. 388, no.6637, pp. 68-71, 1997 https://doi.org/10.1038/40398
  19. M. Livingstone and D. Hubel, "Anatomy and physiology of a color system in the primate visual cortex," J Neurosci 4, pp. 309-356, 1984.
  20. T. Baliey and G. Dissanayake, "An efficient multiple hypotheses filter for bearing-only SLAM," In Proceedings of International Conference on Intelligent Robot and Systems(IROS'04), pp. 736-741, 2004.