DOI QR코드

DOI QR Code

Analysis of Long-Term Performance of Geogrids by Considering Interaction among Reduction Factors

감소계수 상호영향을 고려한 지오그리드의 장기성능 해석

  • 전한용 (인하대학교 나노시스템공학부) ;
  • 김원춘 (인하대학교 나노시스템공학부) ;
  • 장연수 (동국대학교 사회환경시스템공학부)
  • Received : 2012.05.16
  • Accepted : 2012.07.13
  • Published : 2012.07.31

Abstract

Total reduction factor that is used when calculating allowable tensile strength of geogrids is made by multiplying the installation damage reduction factor ($RF_{ID}$), chemical degradation reduction factor ($RF_D$), and creep reduction factor ($RF_{CR}$) etc. In case of a model estimating allowable tensile strength considering reduction factor over the short-term tensile strength of geogrids, it has a limit of not considering interaction force between reduction factors. Junction strength comes to be reduced by installation damages or chemical degradation in the same way as tensile strength. Single junction test method cannot properly test damaged samples and shows large deviations as it does not consider scale effect. Besides, regarding calculating shear strength, no reasonable study on reduction factors was conducted yet. Therefore, in this study, reduction factors that may affect the long-term performance of geogrids were revaluated considering various conditions and accurate long-term allowable tensile strength was calculated considering interrelation between reduction factors. Creep results after installation damage and chemical resistance test showed lower value than calculated value according to GRI GG-4. After the installation damage test and the chemical resistance test, the reduction factor of junction strength was less than that of tensile strength. Shear strength before and after installation damage showed no change or increase.

지오그리드의 장기허용강도를 산출할 때 사용되는 총 감소계수는 내시공성 감소계수($RF_{ID}$), 내화학성 감소계수($RF_D$), 크리프 감소계수($RF_{CR}$) 등이 적용된다. 지오그리드의 단기인장강도에 대한 감소계수를 고려한 허용인장강도 산출 모델의 경우 감소계수들 사이의 상호 작용력을 고려하지 않는 한계를 가지고 있다. 접점강도는 인장강도와 마찬가지로 시공 시 손상이나 화학적 분해에 의하여 감소하게 된다. 기존의 단일접점강도 시험 방법은 치수효과를 고려할 수 없기에 결과의 편차가 큰 시공 시 손상된 시험편의 접점강도를 측정하는데 적합하지 않다. 또한 시공 시 손상에 의한 전단강도 변화에 대한 연구도 전혀 이루어지지 않은 실정이다. 따라서 본 연구에서는 다양한 조건을 고려하여 지오그리드의 장기성능에 영향을 미치는 감소계수들을 재평가하고 감소계수 사이의 상호 작용을 고려하여 정확한 장기허용강도를 구하려고 한다. 내시공성 시험과 내화학성 시험 후 크리프 시험결과 총 감소계수는 GRI GG-4 시험값보다 작게 나타났다. 내시공성 시험과 내화학성 시험 후 접점강도의 감소계수는 인장강도 감소계수보다 더 작게 나타났다. 내시공성 시험후 전단강도 차이가 나타나지 않거나 증가함을 나타내었다.

Keywords

References

  1. Allen, T. M. and Bathurst, R. J. (1996), "Combined allowable strength reduction factor for geosynthetic creep and installation damage", Geosynthetics International, Vol. 3, No. 3, pp. 407-439. https://doi.org/10.1680/gein.3.0069
  2. Allen, T. M. and Bathurst, R. J. (2002), "Long-term performance of geosynthetic walls", Geosynthetics International, Vol. 9, No. 5-6, pp. 575-578.
  3. ASTM D4595. Standard Test Method for Tensile Properties of Geotextiles by the Wide Width Strip Method, ASTM International, West Conshohocken, PA.
  4. ASTM D5321. Standard Test Method for Determining the Coefficient of Soil and Geosynthetic or Geosynthetic and Geosynthetic Friction by the Direct Shear Method, ASTM International, West Conshohocken, PA
  5. Berg, R. R., Allen and Bell, J. R. (1998), "Design procedure for reinforced soil walls-A historical perspective", Proc. of 6th IC ongeosynthetics, pp. 491-496.
  6. Billing, J. W., Greenwood, J. H. and Small, G. D. (1990), "Chemical mechanical durability of geotextiles", proc. of the 4th international Conference on Geotextiles, Geomembranes and Related Products, pp. 621-626.
  7. Cho, S. D., Lee, K. W., Cazzuffi, Daniele A. and Jeon, H. Y. (2006), "Evaluation of combination effects of installation damage and creep behavior on long-term design strength of geogrids", Polymer testing, Vol. 25, pp. 819-828. https://doi.org/10.1016/j.polymertesting.2006.04.007
  8. GRI standard - GG4. Standard Practice for Determination of the Long-Term Design Strength of (a) Stiff and (b) Flexible Geogrids.
  9. Hsieh, C., Wu, J. H., Lin, C. K. and Hsieh, M. (2000), "The study of the installation damage of flexible geogrids". Proc. of the 2nd European Geosynthetics Conference, Bologna, pp. 889-893.
  10. ISO 10722-1. Geotextiles and geotextile-related products-Procedure for simulating damage during installation.
  11. Koerner, R. M. (2005), Designing with Geosynthetics, 5th edition, Person Education Inc., NewJersey, pp. 332-348.
  12. Lawson, C. R. (1986), "Geosynthetics in soil reinforcement", Proc. of symposium on geotextiles in civil engineering, Institution of engineers Australia, Newcastle, pp. 1-35.
  13. Task Force #27. (1991), Guidelines for the design of mechanically stabilized earth walls, AASHTO-AGC-ARTBA Joint committee, Washington, DC.
  14. Zornberg, J. G. and Mitchell, J. K. (1994), "Reinforced soil structures with poorly draining backfills", Geosynthetics International, Vol. 1, No. 2, pp. 103-147. https://doi.org/10.1680/gein.1.0006