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General Circulation Model Derived Climate Change Impact and 
Uncertainty Analysis of Maize Yield in Zimbabwe

GCM 예측자료를 이용한 기후변화가 짐바브웨 옥수수 생산에 미치는 영향 및 불확실성 분석

Nkomozepi, Temba D*․Chung, Sang-Ok*,†

은코모제피 템바․정상옥

ABSTRACT
짐바브웨는 식량부족을 격어 오고 있으며, 이는 기후변화에 따른 수자원의 부족, 인구증가, 개발 및 환경보전 등으로 인하여 앞으로는 

더욱 심화될 것으로 보인다. 3가지 배출시나리오 (A2, A1B, B1)에 대한 13개의 GCM 기후자료로부터 상세화한 기후예측값과 AquaCrop 
작물모형을 이용하여 기후변화가 짐바브웨의 주곡인 옥수수의 수확량에 미치는 영향과 모형예측값의 불확실성을 분석하였다. 작물생육환
경이 잘 유지된다고 가정하고 옥수수 잠재생산량을 모의한 결과 기준년도 (1970s)에 비해 2020s, 2050s and 2090s 년대에 평균 (범위) 
8 % (6-9 %), 14 % (10-15 %) 및 16 % (11-17 %) 증가할 것으로 예측되었다. 같은 기간에 대한 물의 생산성은 평균 (범위) 7 % 
(4-13 %), 13 % (6-30 %) 및 15% (6-23 %) 증가할 것으로 예측되었다. 기온의 꾸준한 상승과 대기중 이산화탄소 농도 증가로 인한 
시비효과로 인하여 미래에는 옥수수 단위 생산량과 물의 생산성이 증가할 것으로 예측되었으며 증가 범위를 보면 모형간의 변동성이 상
당히 큰 것을 알 수 있었다. 본 연구결과는 기후변화가 짐바브웨의 옥수수 생산량에 미치는 영향과 변동성을 제시하므로서 장기적인 식
량계획의 기초자료로 이용될 수 있을 것이다.
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I. INTRODUCTION*

Southern Africa is subject to recurrent food shortages 

which could worsen as future water scarcity is inevitable 

due to increasing population demand for food, development 

and environmental maintenance (Cane et al., 1994; Nyakudya 

and Stroosnijder, 2011). Climate change on the other hand 

is expected to increase climate variability and exert more 

pressure on food security in Zimbabwe (Zinyengere et al., 

2011). The sensitivity of southern Africa to climatic extremes 

is compounded by the strong dependence upon agriculture, 

high population growth rate and unstable economic conditions. 

Crop yield forecasting with sufficient lead time is critical to 

support food security planning.
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In Zimbabwe, previous seasonal crop forecasts were 

indirectly inferred from El Niño Southern Oscillation based 

climate forecasting (Cane et al., 1992; Taylor et al., 2002). 

Soil moisture stress is also a primary determinant of crop 

yield and rainfall estimates are the most used inferential 

tool for predicting seasonal crop yields in Zimbabwe 

(Manatsa et al., 2011). Recent studies have incorporated 

the use of crop simulation models, remote sensing and 

geospatial analysis to capture the relationship between 

yields and other variables such as temperature, humidity, 

radiation etc. during the growing season (Chung, 2010; 

Nkomozepi and Chung, 2011b; Zinyengere et al., 2011; 

Manatsa et al., 2011). In Korea, several studies have been 

done on climate change impact on evapotranspiration (ET) 

and paddy irrigation requirement (e.g., Chung, 2009; Hong 

et al., 2009; Yoo et al., 2012).

In order for a study based on the potential impacts of 

climate change on long term maize yields to be implemen-

table, the relevant constraints have to be surmounted. Water 

shortages and heat stress are two of the most important 

environmental factors limiting crop growth, development, 
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and yield (Harrison et al., 2011). High temperatures and 

low soil moisture during the flowering stage are especially 

harmful as they can inhibit successful formation of kernels 

through compromising pollen viability. Whether these losses 

are realized will depend on the effectiveness of adaptation 

strategies, which include shifts in sowing dates, switches 

to longer maturing varieties, and the development of new 

varieties that can better withstand water and heat stress 

and better utilize elevated atmospheric carbon dioxide (CO2) 

concentration.

The complexity of the ecosystem results in responses 

to changes in external forcing that can vary from subtle to 

chaotic. The sensitivity of the earth system to anthropogenic 

greenhouse gas emissions associated with nonlinearity 

can lead to distortion and/or misinterpretation of climate 

change signals thereby reducing the usefulness of seasonal 

climate forecasts that use single climate prediction models. 

The impacts of climate change on crop productivity are 

often assessed using data from general circulation models 

(GCMs) as an input to crop simulation models. Climate 

change involves shifts in both mean and variability of 

climate parameters, and experimental results and simulations 

have shown same-order effects on crop growth and yield. 

It is therefore important for impact models to be able to 

capture the uncertainty associated with yield projections 

(Holzkämper et al., 2012). 

Because any mathematical model is a simplification or 

approximation of reality, there is inevitable uncertainty. 

Yao et al. (2011) summarized five types of uncertainty 

namely context uncertainty, input uncertainty, model structure 

uncertainty, parameter uncertainty and modeling technical 

uncertainty. There is also large uncertainty in the simulation 

and assessment of climate change affecting agriculture in 

terms of the climate prediction, crop models and integrating 

climate models with crop models, and the uncertainty 

propagates through the assessment process (Nkomozepi 

and Chung, 2012).

The purpose of this study is to generate climate scenarios 

from multiple GCMs, simulate multiple maize yield forecasts 

and assess them for uncertainty. AquaCrop crop model 

was chosen in this study because the model can use few 

parameters while maintaining accuracy making it attractive 

for locations where some information may be unavailable. 

AquaCrop is a dynamic process-based crop model that 

resolves plant and environmental processes relevant to crop 

growth and is rooted in physical responses dependent on 

developmental stage and crop stresses that may interact 

in a non-linear manner.

II. MATERIAL AND METHODS

1. Study Area

Agriculture in Zimbabwe is spread across five natural 

agro-ecological zones that range from areas of high rainfall 

and productivity in the north to areas of extremely low 

productivity where rainfall is sparse and variable in the 

south. This study was conducted on 3 provinces mostly 

situated in natural agro-ecological region II (NR II), located 

in the north-eastern part of the Zimbabwe (Fig. 1). Kutsaga 

Research Station in Harare city (17° 56' S, 31° 05' E; 

1,479 m above mean sea level) was selected for this 

study to reflect typical farm management practices under 

commercial production conditions for NR II. Kutsaga station 

was established in 1994 and has been used in related 

studies that consider irrigation and drainage for NR II 

(Savva and Frenken, 2002). In addition, homogeneous areas 

Fig. 1 Map of Zimbabwe showing boundaries of natural 
regions and the study area (NR II)
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Table 1 Description of natural agro-ecological region II 
(FAO, 2006)

Land use sector
Area 

(1,000 ha) (%)

Population

(1,000) (%)

Maize area

(1,000 ha) (%)

Large-scale commercial farming 2,422 (41.3) 410 (11.0) 145 (12.2)

Small-scale commercial farming 1,893 (32.3) 988 (26.5) 503 (42.5)

Communal areas 926 (15.8) 2,063 (55.4) 532 (44.9)

Parks and urban areas 620 (10.6) 262 (7.1) 5 (0.4)

Total 5,861 (100) 3,723 (100) 1,185 (100)

with more intensive management, modern cultivars, and 

heavy use of mechanical equipment are more suited to crop 

model simulations based upon a single representative site 

(Ruane et al., 2011).

The 5,861,400 ha study area is covered by a mixture 

of ferric and gleyic luvisols which are loamy with heavier 

textured sub-soils which are inherently fertile (FAO, 2006). 

NR II is situated in the hilly and mountainous northern 

part of the country with valleys that are used for agriculture 

and mining. The altitude ranges from 900 to 1,500 m above 

sea level. Approximately 74 % of the study area is utilized 

for commercial agriculture to produce maize, soybeans, 

cotton, wheat, groundnuts, tobacco and horticultural crops 

such as roses, cut flowers and vegetables. The remaining 

25 % consists of communal areas, national parks and urban 

settlements (Table 1). 47 % and 7 % of the maize grown 

in the large scale (LSCF) and small scale commercial (SSCF) 

and farming sectors respectively is under full or partial 

control irrigation. Maize grown in the communal areas is 

rain-fed and under subsistence farming. The study region 

has a sub-tropical climate and has fairly reliable rainfall 

which ranges from 750 to 1,000 mm per year and falls from 

November to April. Maize (Zea mays) crop was selected 

to be investigated since it is the main crop in this area 

and a range of 3 future climate periods to be relevant to 

planning of agricultural infrastructure and policy. The maize 

is planted in late October and harvested in late March.

2. Climate and Yield Data

Historical climate and official post-harvest yield data were 

provided by the Central Statistical Office of Zimbabwe 

and FAOSTAT (www.faostat.com). Future climate data for 

Kutsaga station were from the IPCC 4th assessment report 

and were downloaded from the IPCC Data Distribution 

Center (http://www.ipcc-data.org) for the periods of 2011 

-2030 (2020s), 2046-2065 (2050s) and 2080-2099 (2090s) 

for the 13 GCMs used in this study (Table 2). 30 year 

mean monthly values were adopted to eliminate natural 

inter-annual to inter-decadal variability. GCMs are systems 

of partial differential equations based on the basic laws of 

physics, fluid motion, and chemistry. The outputs include 

temperature and precipitation estimates across the grid, 

as well as many other variables. The boundary conditions 

include emissions of atmospheric gases (including CO2) 

and volcanic eruptions (Fildes and Kourentzes, 2011).

The different capabilities and limitations of the GCMs 

give rise to output variability (uncertainty) as shown by 

the equilibrium climate sensitivity (ΔTx2), transient climate 

response (TCR), and residual or fitting error (R) (Table 2). 

Model outputs from INM：CM3, IPSL：CM4 and MIROC3.2 

were flagged as outliers based on the interquartile range 

method but were not excluded from this study because 

we do not assume a normal distribution. Uncertainty can 

be further attributed to the different discretization, para-

meterization and carbon cycle models used by the GCM 

(Chung and Nkomozepi, 2012). Uncertainty introduced by 

GCM projections reflects the state of agreement across 

models, but it is possible that future conditions fall outside 

Table 2 GCM description with equilibrium climate sensitivity 
(ΔTx2), transient climate response (TCR), and residual 
error (R)

GCM

Agency：Model
Country

Resolution

(lat.×lon.)

ΔTx2 

(℃)

R

(℃)

TCR

(℃)

R

(℃)

BCCR：BCM2 Norway 1.9°×1.9° － － － －
CCCMA：CGCM3.1 Canada 2.8°×2.8° 3.40 0.09 1.90  0.08

CNRM：CM3 France 1.9°×1.9° － － 1.60 －0.23

CSIRO：MK3 Australia 1.9°×1.9° 3.10 －0.21 1.40 －0.43

GFDL：CM2.0 USA 2.0°×2.5° 2.90 －0.41 1.60 －0.23

GFDL：CM2.1 USA 2.0°×2.5° 3.40 0.09 1.50 －0.33

INM ：CM3 Russia 4.0°×5.0° 2.10 －1.21 1.60 －0.23

IPSL：CM4 France 2.5°×3.75° 4.40 1.09 2.10  0.28

NIES：MIROC3.2 Japan 2.8°×2.8° 4.00 0.69 2.10  0.28

MPIM：ECHAM 5 Germany 1.9°×1.9° 3.40 0.09 2.20  0.38

MRI：CGM2.3.2 Japan 2.8°×2.8° 3.20 －0.11 2.20  0.38

UKMO：HadCM3 UK 2.5° x3.75° 3.30 －0.01 2.00  0.18

METRI：ECHO-G
Germany

/Korea
3.9°×3.9° 3.20 －0.11 1.70 －0.13
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of this projected range and each new climate simulation 

requires a costly new impacts assessment. An alternative 

approach (used herein) would be to use a crop model to 

simulate the yield responses to a broader range of climate 

states or scenarios, capturing a wider uncertainty space 

for integrated assessment models. Climate projections for 

the B1, A1B, and A2 scenarios of the IPCC Special Report 

on Emissions Scenarios (SRES) were used in this study. 

The mean annual atmospheric CO2 concentration is estimated 

to reach 856, 717 and 549 ppm by 2100 for the A2, A1B 

and B1 scenarios respectively. The existence of SRES 

scenarios merely serves as a reminder that these estimates 

of future climates are imprecise; they are the output of 

models striving to represent complex natural systems.

While it is ideal to use observed records for the baseline, 

suitable data were not readily available and this study relied 

on an International Water Management Institute (IWMI) 

modeled dataset with a spatial resolution of 10 minutes-Arc 

(New et al., 2002). The IWMI database is currently the 

most extensive global climate database in terms of resolution, 

coverage and number of parameters that is available in 

the public domain (Droogers and Allen, 2002). The monthly 

average dataset was developed using observations from 

about 56,000 stations around the world from 1961 to 

1990 in which Zimbabwe is well represented.

The change factor (CF) procedure was used as in Chung 

and Nkomozepi (2012). Key advantages of the CF approach 

are the ease and speed of application and the direct scaling 

of the scenario in line with changes suggested by the GCM 

or RCM. The procedure involves 3 steps (Fig. 2). The 

Fig. 2 Flowchart of the CF method (modified from Nkomozepi 
and Chung, 2011a)

first step involves the establishment of long term baseline 

climatology data (1961-1990). In the second step, the change 

factors in the equivalent variable are calculated for the 

GCM grid box closest to the target site. In the third step, 

the change factor obtained from the GCM projections for 

a particular time slice and a SRES scenario is applied to 

each monthly average in the baseline. Absolute change 

factors were used for temperature and relative changes for 

rainfall, wind speed and radiation. This process is shown 

by the following equations:

Tm,fut＝TIWMI,m,1975s＋∆Tfut (1)

Pm,fut＝PIWMI,m,1975s＋∆Pfut (2)

where Tm,fut and Pm,fut are the temperature and other weather 

parameters (rainfall, wind speed or radiation) for month m 

in the future period, TIWMI,m,1975s and PIWMI,m,1975s are observed 

temperature and other weather parameters for month m for 

the 1975s (baseline period), ∆Tfut and ∆Pfut are the long term 

change factors of monthly average temperature and other 

weather parameters and are calculated as follows;

∆Tfut＝TGCM,m,fut－TGCM,m,1975s (3)

∆Pfut＝PGCM,m,fut ÷ PGCM,m,1975s (4)

where TGCM,m,1975s, PGCM,m,1975s, TGCM,m,fut and PGCM,m,fut are 

the long term (20 year) monthly means for month m in the 

baseline and future periods simulated by GCM for a given 

scenario.

3. AquaCrop Model

When forecasting crop yields, simplified descriptions of 

reality such as homogenous crop fields with defined thematic 

boundaries, internal characteristics and external driving 

variables with an apparent absence of uncertainty are 

generally used (Nkomozepi and Chung, 2011b). AquaCrop 

model has a structure that overarches the soil-plant- 

atmosphere continuum. It includes the soil, with its water 

balance; the plant, with its development, growth and yield 

processes; and the atmosphere, with its thermal regime, 
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Fig. 3 Historical trends of (a) temperature, (b) rainfall and (c) yield

rainfall, irrigation, evaporative demand and carbon dioxide 

concentration. Additionally, some management aspects are 

explicitly considered, as they will affect the soil water 

balance, crop development and therefore crop yield. The 

functional relationships between the different model com-

ponents and detailed descriptions can be found in Raes et 

al. (2010).

Due to model and data limitations, effects of pests and 

diseases, availability of water for irrigation, availability of 

nutrients, socio-economic factors and possible changes in 

crop sowing-maturity duration (calendar day used) in the 

future were not considered (i.e. potential yield). Crop 

response was simulated under irrigation for the baseline 

and future scenarios. The maximum potential yield was 

simulated for the baseline, 1962-2010 and future periods 

using AquaCrop. The maximum potential yield will be used 

in the quantification of the uncertainty of the potential 

impacts of climate change on maize yields.

III. RESULTS AND DISCUSSION

1. Historical Climate and Yield

The maximum and minimum temperatures, yield (1994- 

2010) and rainfall from 1962 to 2010 are shown in Fig. 3 

(a), (b) and (c). Over the 48 year period, the maximum 

temperatures showed a higher increasing trend than minimum 

temperature. In spite of the increases in temperature, the 

diurnal temperature variations lie within the limits for op-

timum maize growth. The large-scale commercial farming 

(LSCF) and maximum potential yields showed an increasing 

trend while the small-scale commercial farming (SSCF), 

communal and the national average yields showed a declining 

trend. Linear regression showed R2 values of 0.23, 0.50, 

and 0.3 for the communal, SSCF and national average yields 

respectively. The actual yields realized by the different 

sectors within the study area are significantly less than 

the simulated maximum potential values (about 13 t ha－1) 

and research trials yields.

The discrepancy can be accounted for by classifying maize 

yield into maximum potential, attainable and actual yield. 

The maximum potential yield is influenced by CO2, solar 

radiation, temperature and crop features. The attainable yield 

is a fraction of the potential yield as influenced by limiting 

factors such as water and nutrient availability. The actual 

yield refers to the fraction of attainable yield as influenced 

by reducing management factors such as weeds, pests and 

diseases. In Zimbabwe, the actual yields are further affected 
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Fig. 5 Box and whisker plots for relative changes in WP and yield

by inaccessibility to capital, poor quality seeds and the 

non-use of climate information. The socioeconomic and 

political factors which are beyond the scope of neither 

climate change nor this study including the changing of 

land ownership in Zimbabwe complicate the relationship 

between crop yields and the climatic factors. The observed 

yields (Fig. 3(c)) show that LSCF has much higher values 

than the others. This is mainly because of LSCF manages 

water, weeds and pests much better than the others.

The IPCC climate projections for the study area suggest 

average annual temperature increases of 1.1 ℃, 2.3 ℃ 
and 3.6 ℃ from the baseline of 21.4 ℃ for the 2020s, 

2050s and 2090s respectively. Changes in annual effective 

rainfall were projected to range from －16 to ＋9 %, －
19 to 8 % and －16 to 7 % from the baseline of 510 mm 

for the 2020s, 2050s and 2090s respectively.

2. Planting Dates

The simulated planting date for the baseline was 4 

November and lies within the normal range determined by 

the Agricultural Research and Extension Services and 

Meteorological Services Department methods in Raes et al. 

(2004). The onset of the growing season was generated for 

each scenario based on climatic criteria. The onset of the 

season is preceded by at least 30 mm of cumulative rainfall 

from the start of the rainy season. The planting dates for 

the future were recorded into classes of four days from the 

Fig. 4 Simulated planting dates

1st to the 16th of November (Fig. 4). The planting date dis-

tribution shifted torwards the right because of the decreased 

rainfall in October and November.

3. Maize Yield and Water Productivity

The characteristics of individual distributions of projections 

are summarized by graphical and tabular forms. In the box 

and whisker plots, the length of the box in the plot is a 

measure of the variability of the distribution; it shows the 

middle 50 % of the distribution (interquartile range). The 

lines in the middle of the boxes represent the median while 

the error bars denote upper and lower limits of the data.

The simulated changes of the maize yield (t ha－1) and 
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water productivity (WP) (kg m－3) from the baseline values 

are shown in Fig. 5. The yields are predicted to be 

significantly lower in the B1 scenario and increasing in the 

future for all scenarios. The 2050s B1 scenario showed the 

most variable simulated yield changes and the B1 scenario 

had the highest range in all the time slices.

The respective medians of the WP also show increasing 

trends for the future. The increased WP can be attributed 

to that although maize is a C4 plant, the changes initiated 

by increase in atmospheric CO2 concentration following 

precise signal transduction pathway maize will lead to in-

creased photosynthesis and reduced stomatal conductance.

Table 3 and 4 show the simulated changes of the maize 

yield (t ha－1) and WP (kg m－3) from the baseline values. 

The yield increases in the future periods and was projected 

to reach the highest in the 2090s A2. The increases in 

yield can be attributed to the expected increase in the 

atmospheric CO2 concentration. CO2 concentration can affect 

both the growth and water use of many plants through its 

first-order effect on photosynthesis and transpiration. As 

well as having direct effects on vegetation and biomass, it 

is also the major greenhouse gas associated with global 

climate change. Maize yields were simulated to increase by 

an average (and range) of 8 % (6-9 %), 14 % (10-15 %) 

and 16 % (11-17 %) in 2020s, 2050s and 2090s respectively. 

Table 3 Projected change of potential maize yield from the 
baseline (%) 

GCM
2020s 2050s 2090s

A2 A1B B1 A2 A1B B1 A2 A1B B1

BCM2  - 7.3 6.5  - 13.2 10.5  - 16.4 13.5

CGCM  - 9.0  -  - 15.3  -  - 16.1  -

CNRM：CM3 7.6 7.8  - 14.7 14.7  - 16.9 16.4  -

MK3 7.0 6.8 6.1 12.2 12.2 10.1 17.0 16.1 10.9

GFDL2.0 8.1 8.2 7.4 14.3 15.2 11.9 16.4 16.2 13.4

GFDL：CM2.1 8.1 8.0 7.4 15.1 15.0 12.4 16.8 16.0 13.4

INM：CM3 8.3 9.0 9.3 15.2 15.2 12.8 17.1 16.3 14.3

IPSL：CM4 7.8 8.2 7.8 15.3 15.3 13.1 17.1 16.0 14.1

MIROC3.2 9.1 7.4 7.2 14.9 14.3 12.2 17.2 16.6 14.3

ECHAM 5 7.9 7.6 7.7 15.2 15.1 13.5 16.9 16.2 13.9

CGM2.3.2 7.2 6.8 6.8 14.2 13.9 11.0 17.3 16.4 13.8

HadCM3 7.5 7.8 7.0 14.9 14.8 13.0 16.8 16.2 14.0

ECHO-G 7.6 7.5  - 14.3 14.8  - 17.1 16.5  -

Average (Range) 8 (6-9) 14 (10-15) 16 (11-17)

*Baseline value; 12.9 t ha－1

The WP was also projected to increase by an average (and 

range) of 7 % (4-13 %), 13 % (6-30 %) and 15 % (6-23 %) 

in 2020s, 2050s and 2090s respectively.

Table 5 shows the average (and range) simulated eva-

poration (Ea) and transpiration (Ta). The transpiration values 

are generally on a slight increasing trend for all three time 

slices with a few models that are outliers as shown by the 

ranges in Table 5. Evaporation was simulated to gradually 

increase over the future periods at a higher rate than the 

transpiration and had higher variability (uncertainty). The 

higher uncertainty in evaporation values shows that evaporation 

will be more affected by the future climate change. The 

planting date proved to significantly alter the simulated ET. 

This is because the simulated reference ET (ETo) in the 

Table 4 Projected change of maize WP from the baseline (%) 

GCM
2020s 2050s 2090s

A2 A1B B1 A2 A1B B1 A2 A1B B1

BCM2  - 4 6  - 14 10 - 16 11

CGCM  - 7  -  - 11  - - 23 - 

CNRM：CM3 7 7  - 11 14  - 14 13 - 

MK3 7 11 10 14 16 16 23 20 17

GFDL2.0 11 4 13 13 11 14 21 18 13

GFDL：CM2.1 4 4 4 13 13 6 20 19 7

INM：CM3 6 7 6 11 11 10 15 14 8

IPSL：CM4 8 5 6 14 14 14 17 21 12

MIROC3.2 9 6 6 21 14 10 18 11 8

ECHAM 5 7 8 7 12 10 9 10 6 9

CGM2.3.2 8 8 7 14 13 9 18 16 12

HadCM3 6 5 6 13 14 11 13 13 13

ECHO-G 8 9  - 15 30   23 17  -

Average (Range) 7 (4-13) 13 (6-30) 15 (6-23)

*Baseline value; 2.7 kg m－3

Table 5 AquaCrop simulated Ea and Ta for 3 SRES scenarios 
and 13 GCMs

2020s 2050s 2080s

Parameter

Average (Range)

Value (mm)

Change (%) 

Average (Range)

Value (mm)

Change (%)

Average (Range)

Value (mm)

Change (%)

Ea 
199 (175-226)

2 (－10-16)

203 (182-216)

3 (－7-11)

206 (159-222)

5 (－18-14)

Ta 
345 (322-366)

－0.2 (－7-6)

347 (325-366)

0.2 (－6-6)

341 (315-372)

－1.3 (－9-8)

ETa 
544(523-582)

0.6 (－3-8)

550 (512-574)

2 (－5-6)

547 (509-594)

1 (－6-10)

*Baseline value - Ea 195 mm; Ta 346 mm; ETa 541 mm
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study area constantly decreases from October until the end 

of the growing season. There were at least four GCMs in 

each future scenario which showed evaporation and trans-

piration values less than those of the baseline. Despite the 

decreases in the future Ea and Ta from the baseline values, 

the yield for the corresponding GCMs still increased because 

the WP was simulated to increase in the future. The re-

lationship between biomass produced and water consumed 

by a given species is linear for a given climatic condition 

and it changes when corrected for future atmospheric CO2 

concentration and the evaporative demand of the atmosphere 

(normalized WP concept).

4. Uncertainty of Yield and WP

Table 6 shows the average (and range) standardized index 

(SI) of the simulated WP and yield. The standardized index 

(SI) captures the anomalies as a single numeric value; it shows 

the parameter deviation from the mean and is expressed by: 

SI＝(x-x) / σ (5)

where x is the parameter value, x is the parameter mean 

and σ is the standard deviation.

If a normal distribution is assumed, index values greater 

than 1.5 denote significantly higher parameter values and 

those less than －1.5 denote significantly lower values. The 

condition is said to be near normal for SI values ranging 

from －0.99 to ＋0.99. At least two models in the A2 and 

A1B scenarios predict yields that are significantly different 

from the others while at least one model is significantly 

different in the 2050s and 2090s for the B1 scenario. The 

B1 scenario therefore has the least uncertainty. The WP is 

more uncertain than the yield. The high uncertainty is derived 

from the uncertainty from the evaporated quantity of water. 

For each scenario at least three GCMs projected WP values 

that are significantly different from the others.

Table 6 Ranges of the standardized index (SI) of the si-
mulated yield and WP

Parameter 2020s 2050s 2090s

Yield SI －1.5 to 2.3 －2.7 to 1.3 －2.6 to 1.7

WP SI －3.9 to 2.3 －5.2 to 3.1 －4.2 to 2.0

The method used here is a holistic system where it is 

difficult to trace uncertainty back to particular biases. The 

range of projected outcomes acts to integrate these dis-

crepancies into a model-based uncertainty that can be thought 

of as a proxy of the actual uncertainty of yield due to climate 

change. The precision of impacts response surfaces regressed 

from crop model simulations is likely to depend on the crop, 

region, and degree to which yield changes are sensitive to 

particular climatic variables. In Zimbabwe, maize is grown 

under diverse conditions and it is likely that very few (if 

any) farms follow the exact specifications of the calibrated 

configuration. Whilst climate change will significantly shift 

the water balance, the ambient temperatures are predicted 

to remain within the optimum range. In irrigated agriculture, 

the maximum potential yields will increase as a result of 

the direct impact of the increased atmospheric CO2. How-

ever, socio-economic and political factors which are beyond 

the scope of climate change complicate the relationship 

between crop yields and the climatic factors.

IV. CONCLUSIONS

The study presents a method to predict the impacts of 

climate change on the yield of maize and assess the asso-

ciated uncertainty in three high maize production provinces 

of Zimbabwe. Evaporation was simulated to gradually increase 

over the future periods at a higher rate than the transpiration 

and had higher uncertainty. The maximum potential maize 

yields were simulated to increase by an average (and range) 

of 8 % (6-9 %), 14% (10-15 %) and 16 % (11-17 %) in the 

2020s, 2050s and 2090s respectively. The WP was also 

projected to increase by an average (and range) of 7 % 

(4-13 %), 13 % (6-30 %) and 15 % (6-23 %) in the 2020s, 

2050s and 2090s respectively. In Zimbabwe, maize is grown 

under diverse conditions and socio-economic and political 

factors which are beyond the scope of climate change com-

plicate the relationship between crop yields and the climatic 

factors.

It is hoped that this study will encourage similar analyses 

for other crops and regions to determine what patterns 

exist in climate impacts uncertainty, and to develop ways of 

communicating uncertainty in the Zimbabwean context.
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