DOI QR코드

DOI QR Code

Phosphorus Removal Characteristics by Bacteria Isolated from Industrial Wastewater

산업폐수로부터 분리한 인제거 미생물의 인 제거 특성

  • Kim, Hee-Jung (Department of Environmental Biology and Chemistry, Chungbuk National University) ;
  • Lee, Seok-Eon (Department of Environmental Biology and Chemistry, Chungbuk National University) ;
  • Hong, Hyeon-Ki (Department of Environmental Biology and Chemistry, Chungbuk National University) ;
  • Kim, Deok-Hyun (Department of Environmental Biology and Chemistry, Chungbuk National University) ;
  • An, Jung-Woo (Department of Environmental Biology and Chemistry, Chungbuk National University) ;
  • Choi, Jong-Soon (Division of Life Science, Korea Basic Science Institute) ;
  • Nam, Ju-Hyun (Division of Life Science, Korea Basic Science Institute) ;
  • Lee, Moon-Soon (Department of Industrial Plant, Chungbuk National University) ;
  • Woo, Sun-Hee (Department of Crop Science, Chungbuk National University) ;
  • Chung, Keun-Yook (Department of Environmental Biology and Chemistry, Chungbuk National University)
  • 김희정 (충북대학교 환경생명화학과) ;
  • 이석언 (충북대학교 환경생명화학과) ;
  • 홍현기 (충북대학교 환경생명화학과) ;
  • 김덕현 (충북대학교 환경생명화학과) ;
  • 안중우 (충북대학교 환경생명화학과) ;
  • 최종순 (한국기초과학지원연구원 생명과학연구부) ;
  • 남주현 (한국기초과학지원연구원 생명과학연구부) ;
  • 이문순 (충북대학교 특용식물학과) ;
  • 우선희 (충북대학교 식물자원학과) ;
  • 정근욱 (충북대학교 환경생명화학과)
  • Received : 2012.05.17
  • Accepted : 2012.06.25
  • Published : 2012.06.30

Abstract

Background: The removal of phosphate(P) in the wastewater is essential for the prevention of eutrophication in the river and stream. This study was initiated to evaluate the P removal by three strains of bacteria isolated from industrial wastewater. The three strains of bacteria, A1, A2, and A3, isolated were identified as Stenotrophomonas maltophilia strain CUPS 3, Rhodococcus erythropolis strain Sco-C01, Bacillus sp. 3434BRRJ, respectively. METHODS AND RESULTS: The experiments evaluating the effects of temperature, P concentration, aeration, and carbon sources on P removal by Bacillus sp. 3434BRRJ were performed in the following conditions: temperature, 15, 25 and $30^{\circ}C$; P concentrations, 20, 30, and 40 mg/L; oxygen condition, aerobic, anaerobic/aerobic conditions; carbon sources, glucose, acetate and mixture of glucose and acetate. As a result, the best optimum conditions for P removal by Bacillus sp. 3434BRRJ were as follows: temperature, $30^{\circ}C$; P concentration, 20 mg/L; carbon sources, mixture of glucose and acetate; oxygen concentration, anaerobic and aerobic conditions. The P removal efficiencies by Bacillus sp. 3434BRRJ, Stenotrophomonas maltophilia strain CUPS, and Rhodococcus erythropolis strain Sco-C01 were 99%, 50%, 20%, respectively. CONCLUSION: As a result, the best optimum conditions for P removal by Bacillus sp. 3434BRRJ selected and used in this study were as follows: temperature, $30^{\circ}C$; P concentration, 20 mg/L; carbon sources, mixture of glucose and acetate; oxygen concentration, anaerobic and aerobic conditions.

본 연구에서는 산업폐수로부터 분리한 3가지 종의 인 제거율을 확인하였다. 3 가지 분리된 균을 동정한 결과 A1균은 Stenotrophomonas maltophilia strain CUPS 3, A2균은 Rhodococcus erythropolis strain Sco-C01, A3균은 Bacillus sp. 3434BRRJ이었다. 3 가지 분리된 균의 인 제거 및 경유분해를 확인한 결과 인 제거율은 Bacillus sp. 3434BRRJ > Stenotrophomonas maltophilia strain CUPS균 > Rhodococcus erythropolis strain Sco-C01균 순으로 높은 것으로 나타났으며 제거율은 약 99%, 50%, 20%로 확인되었다. 따라서 이 후 실험은 인 제거율이 가장 높았던 Bacillus sp. 3434BRRJ를 가지고 실험하였다. Bacillus sp. 3434BRRJ의 인 제거를 확인하기 위하여 온도별(15, 25 그리고 $30^{\circ}C$), 인 농도별(20, 30 그리고 40 mg/L) 그리고 산소조건(호기, 혐기/호기조건) 및 탄소원을 달리하여 실험하였다. 그 결과Bacillus sp. 3434BRRJ는 $30^{\circ}C$에서 인 제거가 가장 좋았으며 20 mg/L의 인은 약 99% 처리하였고 혐기조건을 거치고 탄소원으로 acetate와 glucose를 혼합하여 처리하였을 때 가장 효율이 좋은 것으로 나타났다. 본 연구에서는 Bacillus sp. 3434BRRJ의 인 제거를 확인 하였다. 균의 생장이 높을수록 인의 제거율은 높았으며, 미생물을 이용한 환경오염물질의 제거에 있어서 가장 중요한 것은 미생물의 활성을 높이는 환경조건을 제공하는 것이다.

Keywords

References

  1. Bouw. E.M., Boekestein. A., Deinema. M., 1989. Quantitative X-ray microanalysis of volutin granules in acinetobacter., 27(2), p. 199, North-Holland, Netherlands.
  2. Converti, A., Rovatti, C. and Borgh, D., 1995. Biological Removal of Phosphorus from Wastewaters by Alternating Aerobic and Anaerobic Conditions, Water Res., 27, 791-798
  3. Daigger G. T., Randoll C. W., Watrip G. D., Romm E. D. and Morales L. M., 1987. Factors Affecting Biological Phosphorus Removal for the VIP Process, IAWPRC Special Conference, Sep.
  4. Grady, C.P., Daigger, G. T., Lim, H. C., 1999. Biological wastewater treatment,, 11(12), p.1049-1057, 2nd Ed. Marcel Dekker. New York.
  5. Levin, G., Sharpiro, J., 1965. Metabolic uptake of phosphorus by wastewater organics. J. Wat. Pollut. Control Fed., 37(6), 800
  6. McClintock, S. A., Randall, C. W., Pattarkine, V. M., 1993. Effect of Temperature and Mean Cell Residence Time on Biological Nutrient Removal Processes, Water Environ. Res., 65(5), 110-118 https://doi.org/10.2175/WER.65.2.3
  7. Shehab. O., R. Deininger., F. Porta., T. Wojewski., 1996. Optimizing phosphorus removal at the Ann Arbor Wastewater Treatment Plant, Water Science and Technology, 34, 493-499
  8. Sedlak, R. I.,1991. Phosphorus and Nitrogen Removal from Municipal Wastewater, 45(18), 5925-5933, 2nd Ed., The Soap and Detergent Association, Lewis Publishers, New York, USA.
  9. Stephens, H. L., Stensel, H. D., 1998. Effect of Operating Conditions on Biological Phosphorous Removal, Water Envir. Res., 70, 360-369
  10. Tracy, K. D. and Flammino, A., 1985. Kinetics of Biological Phosphorous Removal, Presented at the 58th Annual Waste Pollution Control Federation Conference, Kansas City, Missouri, 12, 102
  11. Wang Qian, Yongqi Shao, Vu Thi Thu Huong, Woo-Jun Park, Jong-Moon Park, Che-Ok Jeon, Shao Yongqi, Huong Vu Thi Thu, 2008. Fine-Scale Population Structure of Accumulibacter phosphatis in Enhanced Biological Phosphorus Removal Sludge, Korean Journal of Microbiology and Biotechnology, 18(7), 1290-1297
  12. Yagafarova, G. G. and Skvortsova, I. N., 1996. A new oil-oxidizing strain of Rhodococcus erythropolis, Appl. Biochem. Microbiol., 32, 207-209
  13. Yeo, S.M., Lee, Y.O., 2005. Changes of the Bacterial Community Structure depending on C:N:P ratio for Biological Phosphae Removal, Korean Society of Environmental Engineers 929-934.
  14. Young. K., Morse. G. K., Scrimshaw. M. D., Kinniburgh. J. H., MacLeod. C. L., Lester. J.N., 1999. The relation between phosphorus and eutrophication in the Thames catchment, Science of The Total Environment, 228(2-3), 157-183 https://doi.org/10.1016/S0048-9697(99)00043-1
  15. Zajic, J. E., H. Guignard, and D. F. Gerson., 1997. Properties and Biodegradation of a Bioemulsifier from Corynebacterium hydrocarboclastus, Biotechnol. Bioeng., 9, 1303-1320
  16. Zhang, Y and R. M. Miller., 1994. Effect of Pseudomonas Rhamnolipid Biosurfactant on Cell Hydrophobicity and Biodegradation of Octadecane. Appl. Environ Microbiol., 60, 2101-2106.

Cited by

  1. Toxic Effects of Binary Mixtures of Heavy Metals on the Growth and P Removal Efficiencies of Alcaligenes sp. vol.35, pp.1, 2016, https://doi.org/10.5338/KJEA.2016.35.1.09
  2. Evaluation of Field Applicability of Phosphorus Removal Capability and Growth of Bacillus sp. 3434 BRRJ According to Environmental Factors vol.49, pp.1, 2016, https://doi.org/10.7745/KJSSF.2016.49.1.087
  3. Toxic Effects of Heavy Metals on the Growth and Phosphorus Removal Efficiency of Phosphorus Accumulating Microorganisms (PAOs) vol.46, pp.6, 2013, https://doi.org/10.7745/KJSSF.2013.46.6.673