DOI QR코드

DOI QR Code

Advancements in Polymer-Filler Derived Ceramics

  • Greil, Peter (University of Erlangen-Nuernberg, Department of Materials Science (Glass and Ceramics))
  • Received : 2012.05.22
  • Accepted : 2012.06.21
  • Published : 2012.07.31

Abstract

Microstructure tailoring of filler loaded preceramic polymer systems offers a high potential for property improvement of Si-based ceramics and composites. Advancements in manufacturing of bulk materials by controlling microstructure evolution during thermal induced polymer-ceramic transforma-tion and polymer-filler reactions will be presented. Rate controlled pyrolysis, multilayer gradient laminate design and surface modification by gas solid reaction are demonstrated to yield ceramic components of high fractional density and superior mechanical properties. Emerging fields of applications are presented.

Keywords

References

  1. P. Colombo, G. Mera, R. Riedel, and G. D. Sorarù, "Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics," J. Am. Ceram. Soc., 93 1805-37 (2010).
  2. R. Riedel, A. Kienzle, W. Dressler, L. Ruwisch, J. Bill, and F. Aldinger, "A Silicoboron Carbonitride Ceramic Stable to $2000^{\circ}C$," Nature, 382 796-8 (1996). https://doi.org/10.1038/382796a0
  3. S. R. Shah and R. Raj, "Mechanical Properties of a Fully Dense Polymer Derived Ceramic Made by A Novel Pressure Casting Process," Acta Mater., 50 4093-103 (2002). https://doi.org/10.1016/S1359-6454(02)00206-9
  4. R. Kumar, S. Prinz, Y. Cai, A. Zimmermann, F. Aldinger, F. Berger, and K. Muller, "Crystallization and Creep Behaviour of Si-B-C-N Ceramics," Acta Mater., 53 4567-78 (2005). https://doi.org/10.1016/j.actamat.2005.06.011
  5. D. L. Williamson and R. Raj, "A Model for Nano Domains in Polymer-Derived SiCO," J. Am. Ceram. Soc., 89 2188-95 (2006).
  6. T. Ishikawa, Y. Kohtoku, K. Kumagawa, T. Yamamura, and T. Nasagawa, "High-Strength Alkali-Resistant Sintered SiC Fibre Stable up to $2200^{\circ}C$," Nature, 391 773-5 (1998). https://doi.org/10.1038/35820
  7. A. R. Bunsell and A. Piant, "A Review of the Development of Three Generations of Small Diameter Silicon Carbide Fibres," J. Mater. Sci., 41 823-39 (2006). https://doi.org/10.1007/s10853-006-6566-z
  8. J. D. Torrey and R. K. Bordia, "Mechanical Properties of Polymer-derived Ceramic Composite Coatings on Steel," J. Eur. Ceram. Soc., 28 253-7 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.05.013
  9. C. A. Lewinsohn and S. Elangovan, "Development of Amorphous Non-Oxide Seals for Solid Oxide Fuel Cells," Ceram. Eng. Sci. Proc., 24 317-22 (2003).
  10. P. Colombo, "Engineering Porosity in Polymer-Derived Ceramics," J. Eur. Ceram. Soc., 28 1389-95 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.12.002
  11. N. R Nagaiah, J. S. Kapat, L. An, and L. Chow, "Novel Polymer Derived Ceramic-High Temperature Heat Flux Sensor for Gas Turbine Environment," J. Phys. : Conf. Ser., 34 458-63 (2006). https://doi.org/10.1088/1742-6596/34/1/075
  12. L. Liew, W. Zhang, V.M. Bright, L. An, M.L. Dunn, and R. Raj, "Fabrication of SiCN Ceramic MEMS Using Injectable Polymer-Precursor Technique," Sensors and Actuators: A. Physical,, 89 64-70 (2001). https://doi.org/10.1016/S0924-4247(00)00545-8
  13. P. Greil, "Net Shape Manufacturing of Polymer Derived Ceramics," J. Eur. Ceram. Soc., 18 1905-14 (1998). https://doi.org/10.1016/S0955-2219(98)00129-0
  14. Y. L. Li, H. Fan. D. Su, C. Fasel, and R. Riedel, "Synthesis, Structure and Properties of Bulk Si(O), C Ceramics from Polycarbosilazane," J. Am. Ceram. Soc., 92 2175-218 (2009). https://doi.org/10.1111/j.1551-2916.2009.03184.x
  15. M. Esfehanian, R. Oberacker, T. Fett, and M. J. Hoffmann, "Development of Dense Filler-Free Polymer -Derived SiOC Ceramics by Field-Assisted Sintering," J. Am. Ceram. Soc., 91 3803-5 (2008). https://doi.org/10.1111/j.1551-2916.2008.02730.x
  16. S. Ishihara, H. Gu, J. Bill, F. Aldinger, and F. Wakai, "Densification of Precursor-Derived Si-C-N Ceramics by High-Pressure Hot Isostatic Pressing," J. Am. Ceram. Soc., 85 1706-12 (2002).
  17. P. Greil, "Active Filler Controlled Pyrolysis of Preceramic Polymers (AFCOP)," J. Am. Ceram. Soc., 78 835-48 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08404.x
  18. P. Greil, "Pyrolysis of Active and Passive Filler-Loaded Preceramic Polymers" in Handbook of Advanced Ceramics, Edtrs. S. Somiya et al., pp.369-390, Elsevier Inc., 2003.
  19. P. E. Sanchez-Jimenez, J. A. Downs, and R. Raj, "Transient Viscous Flow During the Evolution of a Ceramic (Silicon Carbonitride) from a Polymer (Polysilazane)," J. Am. Ceram. Soc., 93 2567-70 (2010). https://doi.org/10.1111/j.1551-2916.2010.03897.x
  20. S.J. Lombardo and Z.C. Feng, "Pressure Distribution During Binder Burnout in Three-dimensional Porous Ceramic Bodies with Anisotropic Permeability," J. Mat. Res., 17 1434-40 (2002). https://doi.org/10.1557/JMR.2002.0213
  21. R. Sachanandani and S.J. Lombardo, "Modeling of Green Body Strength, Internal Pressure and Stress in Porous Ceramic Bodies During Thermal Debinding," J. Ceram. Proc. Res., 12 5-11 (2011).
  22. T. Hoefner, "Manufacturing and Properties of Porous Silicate based Ceramics for Ceramic Shaping," PhD Thesis, Univ. Erlangen, Germany, 2009.
  23. S.J. Lombardo and R.V. Shende, "Determination of Binder Decomposition Kinetics for Specifying Heating Parameters in Binder Burnout Cycles from Three-Dimensional Porous Green Bodies," J. Am. Ceram. Soc., 85 780-6 (2002).
  24. M. Steinau, N. Travitzky, T. Zipperle, and P. Greil, "Functionally Graded Ceramics Derived from Preceramic Polymers," in Advances in Polymer Derived Ceramics and Composites, Ceram. Trans., 213 61-71, Wiley, NY, 2010
  25. A. Schkutow, "Measurement of Residual Stresses in Polymer Derived Multilayer Ceramics," Bachelor Thesis, University of Erlangen (2011).
  26. T. Erny, "Formation and Properties of Polymer Derived Composite Ceramics of the System $MeSi_2$/polysiloxane," PhD Thesis, Univ. Erlangen-Nuernberg, Germany, 1996.
  27. S. J. P. Durham, K. Shanker, and R. A. L. Drew, "Carbothermal Synthesis of Silicon Nitride: Effect of Reaction Conditions," J. Am. Ceram. Soc., 74 31-7 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb07292.x
  28. M. Scheffler, T. Gambaryan-Roisman, T. Takahashi, J. Kaschta, H. Muenstedt, P. Buhler, and P. Greil, "Pyrolytic Decomposition of Organo Polysiloxanes," Ceram. Trans., 115 239-50 (2000).
  29. R. Larker, "Reaction Sintering and Properties of Silicon Oxynitride Densified by Hot Isostatic Pressing," J. Am. Ceram. Soc., 75 [1] 62-66 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb05442.x
  30. F.L. Riley, "Silicon Nitride and Related Materials," J. Am. Ceram. Soc., 83 245-65 (2000).
  31. E. Ionescu, H.J. Kleebe, and R. Riedel, "Silicon-containing Polymer-derived Ceramic Nanocomposites (PDC-NCs) : Preparative Approaches and Properties," Chem. Soc. Rev., DOI: 10.1039/C2CS15319J (2012).
  32. J. Cordelair and P. Greil, "Electrical Characterization of Polymethylsiloxane/$MoSi_2$-Derived Composite Ceramics," J. Am. Ceram. Soc., 84 2256-9 (2001).
  33. L. Toma, H.-J. Kleebe, M.M. Müller, E. Janssen, R. Riedel, T. Melz, and H. Hanselka, "Correlation Between Intrinsic Microstructure and Piezoresistivity in a SiOC Polymer-Derived Ceramic," J. Am. Ceram. Soc., 95 1056-61 (2012).
  34. A. Geissinger, J. Oberle, W. Teschner, H. Boeder, and K.-H. Heussner, "Ceramic Electric Resistor," US Patent 5, 961 888 (1999).
  35. S. Jung, D. Seo, S.J. Lombardo, Z.C. Feng, J.K. Chen, and Y. Zhang, "Fabrication using Filler Controlled Pyrolysis and Characterization of Polysilazane PDC RTD Arrays on Quartz Wafers," Sensors and Actuators: A. Physical,, 175 53-9 (2012). https://doi.org/10.1016/j.sna.2011.12.041
  36. X. Yan, X. Cheng, G. Han, R. Hauser, and R. Riedel, "Synthesis and Magnetic Properties of Polymer Derived Metal/SiCN Ceramic Composites," Key Engin. Mat., 353-8, 1485-8 (2007).
  37. L. Biasetto, A. Francis, P. Palade, G. Principi, and P. Colombo, "Polymer-derived Micro-cellular SiOC Foams with Magnetic Functionality," J. Mat. Sci., 43 4119-26 (2008). https://doi.org/10.1007/s10853-007-2224-3
  38. H. Denver, T. Heiman, E. Martin, A. Gupta, and D.-A. Borca-Tasciuc, "Fabrication of Polydimethylsiloxane Composites with Nickel Nanoparticle and Nanowire Fillers and Study of Their Mechanical and Magnetic Properties," J. Appl. Phys., 106 064909 (2009). https://doi.org/10.1063/1.3224966
  39. M. Steinau, N. Travitzky, J. Gegner, J. Hofmann, and P. Greil, "Polymer-Derived Ceramics for Advanced Bearing Applications," Adv. Eng. Mat., 10 1141-6 (2008). https://doi.org/10.1002/adem.200800194
  40. M. Günthner, A. Schütz, U. Glatzel, K. Wang, R.K. Bordia, O. Greißl, W. Krenkel, and G. Motz, "High Performance Environmental Barrier Coatings, Part I: Passive Filler Loaded SiCN System for Steel," J. Eur. Ceram. Soc., 31 3003-10 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.05.027
  41. K. Wang, M. Günthner, G. Motz, and R.K. Bordia, "High Performance Environmental Barrier Coatings, Part II: Active Filler Loaded SiOC System for Superalloys," J. Eur. Ceram. Soc., 31 3011-20 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.05.047
  42. E. Bernardo, G. Parcianello, P. Colombo, J.H. Adair, A.T. Barnes, J.R. Hellmann, B.H. Jones, J. Kruise, and J.J. Swab, "SiAlON Ceramics from Preceramic Polymers and Nano-sized Fillers: Application in Ceramicjoining," J. Eur. Ceram. Soc., 32 1329-35 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.02.035
  43. J. Zeschky, F. Goetz-Neunhoeffer, J. Neubauer, S.H. Jason Lo, B. Kummer, M. Scheffler, and P. Greil, "Preceramic Polymer Derived Cellular Ceramics," Comp. Sci. Techn., 63 2361-70 (2003). https://doi.org/10.1016/S0266-3538(03)00269-0
  44. J. Zeschky, J. Lo, T. Hoefner, and P. Greil, "Mg-alloy Infiltrated Si-O-C Foams," Mat. Sci. Eng. A., 215-21 (2005).

Cited by

  1. Generic principles of crack-healing ceramics vol.1, pp.4, 2012, https://doi.org/10.1007/s40145-012-0020-2
  2. Preceramic Polymer-Derived SiAlON as Sintering Aid for Silicon Nitride vol.97, pp.11, 2014, https://doi.org/10.1111/jace.13134
  3. Polymer-Derived Ceramic Coil Springs vol.18, pp.1, 2015, https://doi.org/10.1002/adem.201500025
  4. High temperature tribology of polymer derived ceramic composite coatings vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-33441-8
  5. Silicon oxycarbide glasses and glass-ceramics: “All-Rounder” materials for advanced structural and functional applications vol.101, pp.11, 2018, https://doi.org/10.1111/jace.15932
  6. Oxidation Resistance and Microstructure Evaluation of a Polymer Derived Ceramic (PDC) Composite Coating Applied onto Sintered Steel vol.12, pp.6, 2012, https://doi.org/10.3390/ma12060914
  7. 3D Printing of Complex‐type SiOC Ceramics Derived From Liquid Photosensitive Resin vol.4, pp.23, 2012, https://doi.org/10.1002/slct.201900993
  8. Metal Silicide Nanosphere Decorated Carbon‐Rich Polymer‐Derived Ceramics: Bifunctional Electrocatalysts towards Oxygen and their Application in Anion Exchange Membrane Fuel Cells vol.6, pp.13, 2012, https://doi.org/10.1002/celc.201900475
  9. Plasma assisted pyrolysis for processing of composite ceramic coatings based on silazane precursor and TiB2 filler applied onto a sintered steel vol.4, pp.None, 2020, https://doi.org/10.1016/j.oceram.2020.100036