DOI QR코드

DOI QR Code

Sintered-reaction Bonded Silicon Nitride Densified by a Gas Pressure Sintering Process - Effects of Rare Earth Oxide Sintering Additives

  • Lee, Sea-Hoon (Engineering Ceramics Research Group, Korea Institute of Materials Science) ;
  • Ko, Jae-Woong (Engineering Ceramics Research Group, Korea Institute of Materials Science) ;
  • Park, Young-Jo (Engineering Ceramics Research Group, Korea Institute of Materials Science) ;
  • Kim, Hai-Doo (Engineering Ceramics Research Group, Korea Institute of Materials Science) ;
  • Lin, Hua-Tay (Materials Science and Technology Division, Oak Ridge National Laboratory) ;
  • Becher, Paul (Materials Science and Technology Division, Oak Ridge National Laboratory)
  • Received : 2012.05.22
  • Accepted : 2012.07.09
  • Published : 2012.07.31

Abstract

Reaction-bonded silicon nitrides containing rare-earth oxide sintering additives were densified by gas pressure sintering. The sintering behavior, microstructure and mechanical properties of the resultant specimens were analyzed. For that purpose, $Lu_2O_3-SiO_2$ (US), $La_2O_3$-MgO (AM) and $Y_2O_3-Al_2O_3$ (YA) additive systems were selected. Among the tested compositions, densification of silicon nitride occurred at the lowest temperature when using the $La_2O_3$-MgO system. Since the $Lu_2O_3-SiO_2$ system has the highest melting temperature, full densification could not be achieved after sintering at $1950^{\circ}C$. However, the system had a reasonably high bending strength of 527 MPa at $1200^{\circ}C$ in air and a high fracture toughness of 9.2 $MPa{\cdot}m^{1/2}$. The $Y_2O_3-Al_2O_3$ system had the highest room temperature bending strength of 1.2 GPa.

Keywords

References

  1. M. H. Bocanegra-Bernal and B. Matovic, "Dense and Nearnet-shape Fabrication of $Si_3N_4$ Ceramics," Mater. Sci. Eng. A, 500 130-49 (2009). https://doi.org/10.1016/j.msea.2008.09.015
  2. M. Mueller, J. Roegner, B. Okolo, W. Bauer, and R. Knitter, "Processing of Micro-components Made of Sintered Reaction Bonded Silicon Nitride (SRBSN). Part 2: Sintering and Micro-mechanical Properties," Ceram. Inter., 36 [2] 707-17 (2010). https://doi.org/10.1016/j.ceramint.2009.11.008
  3. Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature, ASTM C1161-90.
  4. Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature, ASTM C1421-10.
  5. S. H. Lee, C. R. Jo, Y. J. Park, J. W. Ko, and H. D. Kim, "Densification and Mechanical Properties of Silicon Nitride Containing $Lu_2O_3-SiO_2$ Additives," J. Kor. Ceram. Soc., 47 [2] 157-62 (2010). https://doi.org/10.4191/KCERS.2010.47.2.157
  6. Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, and J. Zhu, "A Simple Method to Synthesize $Si_3N_4\;and\;SiO_2$ Nanowires from Si or $Si/SiO_2$ Mixture," J. Crys. Growth, 233 [4] 803-8 (2001). https://doi.org/10.1016/S0022-0248(01)01650-5
  7. N. Hirosaki, Y. Yamamoto, T. Nishimura, and M. Mitomo, "Phase Relationship in the $Si_3N_4-SiO_2-Lu_2O_3$ System," J. Am. Ceram. Soc., 85 [11] 2861-3 (2002).
  8. S. Guo, N. Hirosaki, Y. Yamamoto, T. Nishimura, Y. Kitami, and M. Mitomo, "Microstructural Characterization and High-temperature Strength of Hot-pressed Silicon Nitride Ceramics with $Lu_2O_3$ Additives," Phil. Mag. Lett., 83 [6] 357-65 (2003). https://doi.org/10.1080/0950083031000119172
  9. http://vestaceramics.net/sicomill.html
  10. P. Lichvar, P. Sajgalik, M. Liska, and D. Galusek, "$CaO-SiO_2-Al_2O_3-Y_2O_3$ Glasses as Model Grain Boundary Phases for $Si_3N_4$ Ceramics," J. Eur. Ceram. Soc., 27 [1] 429-36 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.02.029
  11. P. F. Becher, G. S. Painter, N. Shibata, S. B. Waters, and H. T. Lin, "Effects of Rare-earth (RE) Intergranular Adsorption on the Phase Transformation, Microstructure Evolution, and Mechanical Properties In Silicon Nitride with $RE_2O_3$+MgO Additives: RE=La, Gd, and Lu," J. Am. Ceram. Soc., 91 [7] 2328-36 (2008). https://doi.org/10.1111/j.1551-2916.2008.02448.x
  12. Phase Diagram for Ceramists, Vol. 1, Ed. by M. K. Reser, Fig. 266, The American Ceramic Society, Columbus, OH, USA, 1964.
  13. Phase Diagram for Ceramists, Vol. 2, Ed. by M. K. Reser, Fig. 2372, The American Ceramic Society, Columbus, OH, USA, 1969.
  14. U. Kolitsch U, H. J. Seifert, T. Ludwig, and F. Aldinger, "Phase Equilibria and Crystal Chemistry in the $Y_2O_3-Al_2O_3-SiO_2$ System," J. Mater. Res., 14 [2] 447-55 (1999). https://doi.org/10.1557/JMR.1999.0064
  15. Phase Diagram for Ceramists, Vol. 2, Ed. by M. K. Reser, Fig. 2388, The American Ceramic Society, Columbus, OH, USA, 1969.
  16. A. Aksay and J. A. Pask, "Stable and Metastable Equilibria in the System $SiO_2-Al_2O_3$," J. Am. Ceram. Soc., 58 [11-12] 507-12 (1975). https://doi.org/10.1111/j.1151-2916.1975.tb18770.x
  17. S. Guo, N. Hirosaki, Y. Yamamoto, T. Nishimura, and M. Mitomo, "Improvement of High-temperature Strength of Hot-pressed Sintering Silicon Nitride with $Lu_2O_3$ Addition," Scripta Mater., 45 [7] 867-74 (2001). https://doi.org/10.1016/S1359-6462(01)01111-3
  18. K. S. Chee, Y. B. Cheng, and M. E. Smith, "The Solubility of Aluminum in Rare Earth Nitrogen Melilite Phases," J. Eur. Ceram. Soc., 15 [12] 1213-20 (1995). https://doi.org/10.1016/0955-2219(95)00099-2
  19. J. S. Lee, J. H. Mun, B. D. Han, H. D. Kim, B. C. Shin, and I. S. Kim, "Effect of Raw-Si Particle Size on the Properties of Sintered Reaction-bonded Silicon Nitride," Ceram. Inter., 30 [6] 965-76 (2004). https://doi.org/10.1016/j.ceramint.2003.11.003
  20. B. T. Lee, J. H. Yoo, and H. D. Kim, "Microstructure Characterization of GPSed-RBSN and GPSed-$Si_3N_4$ Ceramics," Mater. Trans. JIM, 41 [2] 312-6 (2000). https://doi.org/10.2320/matertrans1989.41.312

Cited by

  1. Densification of Reaction Bonded Silicon Nitride with the Addition of Fine Si Powder - Effects on the Sinterability and Mechanical Properties vol.50, pp.3, 2012, https://doi.org/10.4191/kcers.2013.50.3.218