DOI QR코드

DOI QR Code

Electrically Conductive Silicon Carbide without Oxide Sintering Additives

  • Received : 2012.05.22
  • Accepted : 2012.06.14
  • Published : 2012.07.31

Abstract

This work deals with the preparation of dense SiC based ceramics with high electrical conductivity without oxide sintering additives. SiC samples with different content of conductive Ti-NbC phase were hot pressed at $1850^{\circ}C$ for 1 h in Ar atmosphere under mechanical pressure of 30 MPa. The conductive phase is a mixture of Ti-NbC in weight ratio of Ti/NbC 1:4. Composite with 50% of conductive Ti-NbC phase showed the highest electrical conductivity of $30.6{\times}10^3\;S{\cdot}m^{-1}$, while the good mechanical properties of SiC matrix were preserved (fracture toughness 4.5 $MPa{\cdot}m^{1/2}$ and Vickers hardness 18.7 GPa). The obtained results show that use of NbC and Ti as sintering and also electrically conductive additives is appropriate for the preparation of SiC-based composite with sufficient electrical conductivity for electric discharge machining.

Keywords

References

  1. R. Riedel and I.-W. Chen, "Ceramics Science and Technology," pp. 150, Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim, 2008.
  2. X. Zhang, Z. Lu, and Z. Jin, "Electrical Resistivity and Microstructure of Pressureless Reactive Sintered $MoSi_2$-SiC Composite," Mater. Chem. Phys., 86 16-20 (2004). https://doi.org/10.1016/j.matchemphys.2004.01.027
  3. D. Sciti, L. Silvestroni, A. Balbo, S. Guicciardi, and G. Pezzotti, "High-Strength and -Toughness Electroconductive SiCBased Composites," Adv. Eng. Mater., 8 997-1001 (2006). https://doi.org/10.1002/adem.200600154
  4. F. Frajkorova, M. Hnatko, Z. Lences, and P. Sajgalik, "Model System $Y_2O_3-SiO_2$-Ti-NbC for Liquid Phase Sintering of SiC with High Electrical Conductivity," Ceram. Int., submitted, (2012).
  5. I. Puertas and C.J. Luis, "A Revision of Applications of the Electrical Discharge Machining Process to the Manufacture of Conductive Ceramics," Rev. Met. Madrid, 38 358-72 (2002). https://doi.org/10.3989/revmetalm.2002.v38.i5.420
  6. C. Persson and U. Lindefelt, "Relativistic Band Structure Calculation of Cubic and Hexagonal SiC Polytypes," J. Appl. Phys., 82 5496-508 (1997). https://doi.org/10.1063/1.365578
  7. S. Janz, S. Reber, F. Lutz, and C. Schetter, "Conductive SiC as an Intermediate Layer for CSITF Solar Cells," Thin Solids Films, 511-512 271-4 (2006). https://doi.org/10.1016/j.tsf.2005.11.102
  8. F. Frajkorova, M. Hnatko, Z. Lences, and P. Sajgalik, "Electrically Conductive Silicon Carbide with the Addition of Ti-NbC," J. Eur. Ceram. Soc., 32 [10] 2513-18 (2012). doi:10.1016/j.jeurceramsoc.2012.02.049
  9. D. K. Shetty, I. G. Wright, P. N. Mincer, and A. H. Clauer, "Indentation Fracture of WC-Co Cermets," J. Mater. Sci., 20 1873-82 (1985). https://doi.org/10.1007/BF00555296
  10. A. A. Wereszczak, H. T. Lin, and G. A. Gilde, "The Effect of Grain Growth on Hardness in Hot-Pressed Silicon Carbides," J. Mater. Sci., 41 4996-5000 (2006). https://doi.org/10.1007/s10853-006-0110-z
  11. Z.-Y. Deng, J. She, Y. Inagaki, J.-F. Yang, T. Ohji, and Y. Tanaka, "Reinforcement by Crack-Tip Blunting in Porous Ceramics," J. Eur. Ceram. Soc., 24 2055-59 (2004). https://doi.org/10.1016/S0955-2219(03)00365-0
  12. M. T. Mathew, E. Ariza, L. A. Rocha, A. C. Fernandes, and F. Vaz, "$TiC_xO_y$ Thin Films for Decorative Applications: Tribocorrosion Mechanisms and Synergism," Tribol. Int., 41 603-15 (2008). https://doi.org/10.1016/j.triboint.2007.11.011
  13. A. C. Fernandes, P. Carvalho, F. Vaz, S. Lanceros-Mendez, and A. V. Machado, N. M. G. Parreira, J. F. Pierson, N. Martin, "Property Change in Multifunctional $TiC_xO_y$ Thin Films: Effect of the O/Ti Ratio," Thin Solid Films, 515 866-71 (2006). https://doi.org/10.1016/j.tsf.2006.07.047
  14. D. S. McLachlan, M. Blaszkiewicz, and R. E. Newnham, "Electrical Resistivity of Composites," J. Am. Ceram. Soc., 73 2187-203 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb07576.x
  15. H. Kawaoka, Y. H. Kim, T. Sekino, Y. H. Choa, T. Kusunose, T. Nakayama, and K. Niihara, "New Approach to Provide an Electrical Conductivity to Structural Ceramics," J. Ceram. Proc. Res., 2 1-3 (2001).
  16. S. Kirkpatrick, "Percolation and Conduction," Rev. Modern. Physics, 45 574-8 (1973). https://doi.org/10.1103/RevModPhys.45.574
  17. R. P. Kusy, "Influence of Particle Size Ratio on the Conductivity of Aggregates," J. Appl. Phys., 48 5301-5 (1977). https://doi.org/10.1063/1.323560
  18. A. Bellosi, S. Guicciardi, and A. Tampieri, "Development and Characterization of Electroconductive $Si_3N_4$-TiN Composites," J. Eur. Ceram. Soc., 9 83-93 (1992). https://doi.org/10.1016/0955-2219(92)90049-J
  19. M. A. Capano, J. K. Patterson, L. Petry, and J. S. Solomon, "Time-Dependent Characteristics of Titanium-Silicide Contacts to 6H-Silicon Carbide," J. Electron. Mater., 32 458-62 (2003). https://doi.org/10.1007/s11664-003-0178-z

Cited by

  1. Control of Electrical Resistivity in Silicon Carbide Ceramics Sintered with Aluminum Nitride and Yttria vol.96, pp.11, 2013, https://doi.org/10.1111/jace.12498
  2. Temperature Dependence of Electrical Resistivity (4-300 K) in Aluminum- and Boron-Doped SiC Ceramics vol.96, pp.8, 2013, https://doi.org/10.1111/jace.12351
  3. Electrical properties of liquid-phase sintered silicon carbide ceramics: a review vol.45, pp.1, 2020, https://doi.org/10.1080/10408436.2018.1532394