DOI QR코드

DOI QR Code

A Novel Method to Fabricate Tough Cylindrical Ti2AlC/Graphite Layered Composite with Improved Deformation Capacity

  • Li, Aijun (Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences) ;
  • Chen, Lin (Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences) ;
  • Zhou, Yanchun (Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences)
  • Received : 2012.05.22
  • Accepted : 2012.07.16
  • Published : 2012.07.31

Abstract

Based on the structure feature of a tree, a cylindrical $Ti_2AlC$/graphite layered composite has been fabricated through heat treating a graphite column and six close-matched thin wall $Ti_2AlC$ cylinders bonded with the $Ti_2AlC$ powders at $1300^{\circ}C$ and low oxygen partial pressure. SEM examination reveals that the bond interlayers between cylinders or that between cylinder and column are not fully dense without any crack formation. During the compressive test, the strain of the $Ti_2AlC$/graphite layered composite is about twice higher than that of the monolithic $Ti_2AlC$ ceramic, and the compressive strength of the layered composite is 348 MPa. The layered composite show the noncatastrophic fracture behaviors due to the debonding and shelling off of the layers, which are different from the monolithic $Ti_2AlC$ ceramic. The mechanism of the improved deformation capacity and noncatastrophic failure modes are attributed to the presence of the central soft graphite column and cracks deflection by the bond interlayers.

Keywords

References

  1. W. J. Clegg, K. Kendall, N. M. Alford, T. W. Button, and J. D. Birchall, "A Simple Way to Make Tough Ceramics," Nature, 347 455-7 (1990). https://doi.org/10.1038/347455a0
  2. H. Liu and S. M. Hsu, "Fracture Behavior of Multilayer Silicon Nitride/Boron Nitride Ceramics," J. Am. Ceram. Soc., 79 [9] 2452-7 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08996.x
  3. D. Kovar, M. D. Thouless, and J. W. Halloran, "Crack Deflection and Propagation in Layered Silicon Nitride/Boron Nitride Ceramics," J. Am. Ceram. Soc., 81 [4] 1004-12 (1998).
  4. H. Tomaszewski, H. Weglarz, A. Wajler, M. Boniecki, and D. Kalinski, "Multilayer Ceramic with High Failure Resistance," J. Eur. Ceram. Soc., 27 1373-7 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.04.030
  5. Y. M. Luo, W. Pan, S. Q. Li, J. Chen, R. G. Wang, and J. Q. Li, "Mechanical Property and Microstructure of a $Si_3N_4/Ti_3SiC_2$ Multilayer Composite," Ceram. Int., 28 223-6 (2002). https://doi.org/10.1016/S0272-8842(01)00082-7
  6. Q. F. Zan, C. A. Wang, Y. Huang, S. K. Zhao, and C. W. Li, "The Interface-layer and Interface in the $Al_2O_3/Ti_3SiC_2$ Multilayer Composite Prepared by in situ Synthesis," Mater. Lett., 57 3826-32 (2003). https://doi.org/10.1016/S0167-577X(03)00186-1
  7. J. Li and Y. C. Zhou, "A Novel Method to Make Tough $Ti_2AlC/Al_2O_3\;and\;Ti_3AlC_2/Al_2O_3$ Laminated Composites," J. Am. Ceram. Soc., 93 [12] 4110-4 (2010). https://doi.org/10.1111/j.1551-2916.2010.03989.x
  8. M. W. Barsoum, "The $M_{N+1}AX_N$ Phases: A New Class of Solids; Thermodynamically Stable Nanolaminates," Prog. Solid State Chem., 28 201-81 (2000). https://doi.org/10.1016/S0079-6786(00)00006-6
  9. M. A. Pietzka and J. C. Schuster, "Summary of Constitutional Data on the Al-C-Ti System," J. Phase Equilib., 15 392-400 (1994). https://doi.org/10.1007/BF02647559
  10. M. Lopacinski, J. Puszynski, and J. Lis, "Synthesis of Ternary Titanium Aluminum Carbides Using Self-Propagating High-Temperature Synthesis Technique," J. Am. Ceram. Soc., 84 [12] 3051-3 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb01138.x
  11. M. W. Barsoum, M. Ali, and T. El-Raghy, "Processing and Characterization of $Ti_2AlC,\;Ti_2AlN\;and\;Ti_2AlC_{0.5}N_{0.5}$," Metall. Mater. Trans. A, 31 1857-65 (2000). https://doi.org/10.1007/s11661-006-0243-3
  12. X. H. Wang and Y. C. Zhou, "Solid-Liquid Reaction Synthesis and Simultaneous Densification of Polycrystalline $Ti_2AlC$," Z. Metalkd., 93 66-71 (2002). https://doi.org/10.3139/146.020066
  13. M. W. Barsoum, D. Brodkin, and T. El-Raghy, "Layered Machinable Ceramics for High Temperature Applications," Scripta Mater., 36 535-41 (1997). https://doi.org/10.1016/S1359-6462(96)00418-6
  14. M. Sundberg, G. Malmqvist, A. Magnusson, and T. El-Raghy, "Alumina Forming High Temperature Silicides and Carbides," Ceram. Int., 30 1899-905 (2004). https://doi.org/10.1016/j.ceramint.2003.12.046
  15. J. W. Byeon, J. Liu, M. Hopkins, W. Fischer, K. B. Park, M. P. Brady, M. Radovic, T. El-Raghy, and Y. H. Sohn, "Microstructure and Residual Stress of Alumina Scale Formed on $Ti_2AlC$ at High Temperature in Air," Oxid. Met., 68 97-111 (2007). https://doi.org/10.1007/s11085-007-9063-0
  16. X. H. Wang and Y. C. Zhou, "High-temperature Oxidation of $Ti_2AlC$ in Air," Oxid. Met., 59 303-20 (2003). https://doi.org/10.1023/A:1023092027697
  17. Y. C. Zhou and X. H. Wang, "Deformation of Polycrystalline $Ti_2AlC$ under Compression," Mater. Res. Innovat., 5 87-93 (2001). https://doi.org/10.1007/s100190100132
  18. M. Radovic, M. W. Barsoum, A. Ganguly, T. Zhen, P. Finkel, S. R. Kalidindi, and E. Lara-Curzio, "On the Elastic Properties and Mechanical Damping of $Ti_3SiC_2,\;Ti_3GeC_2,\;Ti_3Si_{0.5}Al_{0.5}C_2\;and\;Ti_2AlC$ in the 300-1573 K Temperature Range," Acta Mater., 54 2757-67 (2006). https://doi.org/10.1016/j.actamat.2006.02.019
  19. B. Manoun, R. P. Gulve, S. K. Saxena, S. Gupta, and M. W. Barsoum, "Compression Behavior of $M_2AlC$ (M=Ti, V, Cr, Nb, and Ta) Phases to Above 50 GPa," Phys. Rev. B, 73 No.024110 (2006). https://doi.org/10.1103/PhysRevB.73.024110
  20. M. W. Barsoum, I. Salama, T. El-Raghy, J. Golczewski, H. J. Seifert, F. Aldinger, W. D. Porter, and H. Wang, "Thermal and Electrical Properties of $Nb_2AlC,\;(Ti,\;Nb)_2AlC$ and $Ti_2AlC$," Metall. Mater. Trans. A, 33 2775-9 (2002). https://doi.org/10.1007/s11661-002-0262-7
  21. D. R. Askeland and P. P. Phulé, "Construction Materials" in The Science and Engineering of Materials, Fifth Edition, Edited by E. Veitch, pp. 656-62, Thomsonlearning, Singapore, 2006.