DOI QR코드

DOI QR Code

Thermal Shock Tests and Thermal Shock Parameters for Ceramics

  • Awaji, Hideo (King Mongkut's University of Technology Thonburi, Department Tool and Materials Engineering) ;
  • Choi, Seong-Min (Fuji Electric Corporation of America)
  • Received : 2012.05.31
  • Accepted : 2012.07.10
  • Published : 2012.07.31

Abstract

Thermal shock test methods and thermal shock parameters for ceramics were reviewed from the following viewpoints: (1) The test methods should be based on the precise estimation of both temperature and thermal stress distributions in a specimen taking into account the temperature-dependent thermo-mechanical properties; (2) The thermal shock parameters must be defined as a physical property of the materials and described as a function of temperature at the fracture point of the specimen; (3) The relation between the strength and fracture toughness of brittle ceramics under a thermal shock load must be the same as the relation under a mechanical load. In addition, appropriate thermal shock parameters should be defined by the thermal shock strength and thermal shock fracture toughness based on stress and energy criteria, respectively. A constant heat flux method is introduced as a testing technique suitable for estimating these thermal shock parameters directly from the electric power charged.

Keywords

References

  1. P. F. Becher, D. Lewis, K. R. Carman, and A. C. Gonzalez, "Thermal Shock Resistance of Ceramics: Size and Geometry Effects in Quench Tests," Ceram. Bull., 59 [5] 542-45 (1980).
  2. K. T. Faber, M. D. Huang, and A. G. Evans, "Quantitative Studies of Thermal Shock in Ceramics Based on a Novel Test Technique," J. Am. Ceram. Soc., 64 [5] 296-301 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb09606.x
  3. D. Lewis, "Thermal Shock and Thermal Shock Fatigue Testing of Ceramics with the Water Quench Test," Fracture Mechanics of Ceramics, Vol. 5, pp. 487-96, ed. R. Bradt, A. G. Evans, D. P. H. Hasselman, and F. F. Lange, 1983.
  4. Y. Mizutani, T. Nishikawa, T. Fukui, and M. Takatsu, "Thermal Shock Fracture of Ceramic Disk under Rapid Heating," J. Ceram. Soc. Jpn, 103 [5] 525-28 (1995). https://doi.org/10.2109/jcersj.103.525
  5. F. Mignard, C. Olagnon, G. Fantozzi, P. Chantrenne, and M. Raynaud, "Thermal Shock behavior of a Coarse Grain Porous Alumina," J. Mater. Sci., 31 2131-38 (1996). https://doi.org/10.1007/BF00356636
  6. H. Awaji, T. Takahashi, N. Yamamoto, and T. Nishikawa, "Analysis of Temperature/Stress Distributions in Thermal Shocked Ceramic Disks in Relation to Temperature-Dependent Properties," J. Ceram. Soc., Jpn, 106 [4] 358-62 (1998). https://doi.org/10.2109/jcersj.106.358
  7. M. Hamidouche, N. Bouaouadja, C. Olagnon, and G. Fantozzi, "Thermal Shock Behavior of Mullite Ceramic," Ceramics Int., 29 599-09 (2003). https://doi.org/10.1016/S0272-8842(02)00207-9
  8. A. G. Evans, M. Linzer, H. Johnson, D. P. H. Hasselman, and M. E. Kipp, "Thermal Fracture Studies in Ceramic Systems Using an Acoustic Emission Technique," J. Mater. Sci., 10 1608-15 (1975). https://doi.org/10.1007/BF01031862
  9. W. D. Kingery, "Factors Affecting Thermal Stress Resistance of Ceramic Materials," J. Am. Ceram. Soc., 38 [1] 3-15 (1955). https://doi.org/10.1111/j.1151-2916.1955.tb14545.x
  10. D. P. H. Hasselman, "Figures-of-merit for the Thermal Stress Resistance of High-temperature Brittle Materials: a Review," Ceramurgia Int., 4 [4] 147-50 (1978). https://doi.org/10.1016/0390-5519(78)90028-5
  11. D. P. H. Hasselman, "Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics," J. Am. Ceram. Soc., 52 [11] 600-04 (1969). https://doi.org/10.1111/j.1151-2916.1969.tb15848.x
  12. R. W. Davidge and G. Tappin, "Thermal Shock and Fracture in Ceramics," Trans. British Ceram. Soc., 66 405-22 (1967).
  13. H. Awaji, "Thermal Shock Fracture Toughness by Infrared Radiation Heating Technique(in Jpn)," Trans. JSME, 62A [595] 700-06 (1996).
  14. T. J. Lu and N. A. Fleck, "The Thermal Shock Resistance of Solids," Acta Mater., 46 [13] 4755-68 (1998). https://doi.org/10.1016/S1359-6454(98)00127-X
  15. M. Collin and D. Rowcliffe, "Analysis and Prediction of Thermal Shock in Brittle Materials," Acta Mater., 48 1655-65 (2000). https://doi.org/10.1016/S1359-6454(00)00011-2
  16. H. Awaji and S. Sato, "Stress Intensity Factor of an Edge Crack in a Disk and Thermal Shock Fracture Toughness (in Jpn)," Jpn. Soc. Str. & Fract. Mater., 13 78-85 (1978).
  17. Y. Takeuchi and T. Furukawa, "Some Considerations on Thermal Shock Problems in a Plate," J. Appl. Mech., 48 [3] 113-18 (1981). https://doi.org/10.1115/1.3157552
  18. D. P. H. Hasselman, "Strength Behavior of Polycrystalline Alumina Subjected to Thermal Shock," J. Am. Ceram. Soc., 53 [9] 490-95 (1970). https://doi.org/10.1111/j.1151-2916.1970.tb15997.x
  19. T. Sakuma, U. Iwata, and H. Takaku, "Thermal Shock Resistance of Ceramics: A Novel Quenching Method and Non-Steady Heat Transfer Coefficients," in Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, pp. 537-44, Edited by J. F. Keffer, et al., Elsevier Science Pub. Co. ltd., 1991.
  20. T. Sakuma, U. Iwata, H. Takaku, and N. Okabe, "Estimation of Thermal Shock Resistance of Ceramics (in Jpn)," Trans. JSME, 59A 131-36 (1993).
  21. J. P. Singh, J. R. Thomas, and D. P. H. Hasselman, "Analysis of Effect of Heat-Transfer Variables on Thermal Stress Resistance of Brittle Ceramics Measured by Quenching Experiments," J. Am. Ceram. Soc., 63 [3-4] 140-44 (1980). https://doi.org/10.1111/j.1151-2916.1980.tb10678.x
  22. J. P. Singh, D. P. H. Hasselman, and G. Ziegler, "Effect of Drop Height on Critical Temperature Difference (${\Delta}T_c$) for Brittle Ceramics Subjected to Thermal Shock by Quenching into Water," J. Am. Ceram. Soc., 66 [10] C194-95 (1983). https://doi.org/10.1111/j.1151-2916.1983.tb10552.x
  23. J. P. Singh, Y. Tree, and D. P. H. Hasselman, "Effect of Bath and Specimen Temperature on the Thermal Stress Resistance of Brittle Ceramics Subjected to Thermal Quenching," J. Mater. Sci., 16 2109-18 (1981). https://doi.org/10.1007/BF00542371
  24. W. P. Rogers and A. F. Emery, "Contact thermal Shock Test of Ceramics," J. Mater. Sci., 27 146-52 (1992). https://doi.org/10.1007/BF02403657
  25. J. Jung, A. Reck, and R. Ziegler, "The Compatibility of Alumina Ceramics with Liquid Sodium," J. Nuclear Mater., 119 339-50 (1983). https://doi.org/10.1016/0022-3115(83)90213-1
  26. W. Dienst, H. Scholz, and H. Zimmermann, "Thermal Shock Resistance of Ceramic Materials in Melt Immersion Tests," J. Eur. Ceram. Soc., 5 365-70 (1989). https://doi.org/10.1016/0955-2219(89)90040-X
  27. T. Sakuma, U. Iwata, and H. Takaku, "Estimation of Thermal Shock Resistance of Ceramics (in Jpn)," Trans. JSME, 58A 470-75 (1992).
  28. W. O. Soboyejo, C. Mercer, J. Schymanski, and S. R. van der Laan, "Investigation of Thermal Shock in a High-Temperature Refractory Ceramics: A Fracture Mechanics Approach," J. Am. Ceram. Soc., 83 [6] 1309-14 (2001).
  29. V. R. Vedula, D. J. Green, J. R. Hellmann, and A. E. Segall, "Test Methodology for the Thermal Shock Characterization of Ceramics," J. Mat. Sci., 33 5427-32 (1998). https://doi.org/10.1023/A:1004410719754
  30. A. G. Tomba and A. L. Cavalieri, "Evaluation of the Heat Transfer Coefficient in Thermal Shock of Alumina Disks," Mater. Sci. and Eng., A276 76-82 (2000).
  31. S. Kitaoka, Y. Matsudaira, C-H Chen, and H. Awaji, "Thermal Cyclic Fatigue Behavior of Porous Ceramics for Gas Cleaning," J. Am. Ceram. Soc., 87 906-13 (2004). https://doi.org/10.1111/j.1551-2916.2004.00906.x
  32. F. Hugot and J. C. Glandus, "Thermal Shock of Alumina by Compressed Air Cooling," J. Eur. Ceram. Soc., 27 1919-25 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.06.012
  33. M. I. Nieto, R. Martínez, L. Mazerolles, and C. Baudín, "Improvement in the Thermal Shock Resistance of Alumina Through the Addition of Submicron-sized Aluminum Nitride Particles," J. Eur. Ceram. Soc., 24 2293-01 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.07.011
  34. M. Ishitsuka, T. Sato, T. Endo, and M. Shimada, "Thermal Shock Fracture Behavior of $ZrO_2$ Based Ceramics," J. Mater. Sci. Lett., 24 4057-61 (1989). https://doi.org/10.1007/BF01168974
  35. K. J. Konsztowicz, "Crack Growth and Acoustic Emission in Ceramics During Thermal Shock," J. Am. Ceram. Soc., 73 [3] 502-08 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb06545.x
  36. S. Mezquita, R. Uribe, R. Moreno, and C. Baudin, "Influence of Mullite Additions on Thermal Shock Resistance of Dense Alumina Materials, Part 2: Thermal Properties and Thermal Shock Behavior," Brit. Ceram. Trans., 100 246-50 (2001). https://doi.org/10.1179/096797801681503
  37. K. Tagashira, T. Mikami, J. Okamura, T. Sasa, and M. Obata, "Thermal Shock Test of Ceramics by Helium Gas Cooling through a Narrow Slit," JSME Int. J., Series A, 45 [4] 612-19 (2002). https://doi.org/10.1299/jsmea.45.612
  38. K. Niihara, J. P. Singh, and D. P. H. Hasselman, "Observations on the Characteristics of a Fluidized Bed for the Thermal Shock Testing of Brittle Ceramics," J. Mater. Sci., 17 2553-59 (1982). https://doi.org/10.1007/BF00543887
  39. J. Absi and J. C. Glandus, "Improved Method for Severe Thermal Shocks Testing of Ceramics by Water Quenching," J. Eur. Ceram. Soc., 24 2835-38 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.09.024
  40. F. Osterstock, I. Monot, G. Desgardin, and B. L. Mordike, "Influence of Grain Size on the Toughness and Thermal Shock Resistance of Polycystalline," J. Eur. Ceram. Soc., 16 687-94 (1996). https://doi.org/10.1016/0955-2219(95)00190-5
  41. M. Enoki and T. Kishi, "Evaluation of Stochastic Microfracture Process of Particle Dispersed Composites," Mater. Trans., JIM, 37 [3] 399-03 (1996). https://doi.org/10.2320/matertrans1989.37.399
  42. H. Tanaka, S. Honda, T. Nishikawa, and H. Awaji, "Thermal Shock Test for Ceramics by a Water-Flow Cooling Method," J. Ceram. Soc. Jpn, Supplement ,112 [5] S299-04 (2004).
  43. P. F. Becher, "Effect of Water Bath Temperature on the Thermal Shock of $Al_2O_3$," J. Am. Ceram. Soc., 64 C17-C18 (1981).
  44. A. F. Emery and A. S. Kobayashi, "Transient Stress Intensity Factors for Edge and Corner Cracks in Quench-Test Specimens," J. Am. Ceram. Soc., 63 410-415 (1980). https://doi.org/10.1111/j.1151-2916.1980.tb10202.x
  45. S. Honda, S. Hayakawa, T. Nishikawa, and H. Awaji, "Water-Quench Thermal Shock Testing for Ceramic Disks," J. Ceram. Soc. Jpn, 108 [2] 166-71 (2000). https://doi.org/10.2109/jcersj.108.1254_166
  46. H. Tanaka, Y. Maki, K. Tsuboi, S. Honda, T. Nishikawa, and H. Awaji, "Thermal Stresses in Porous Materials under Thermal Shock by Cooling Medium - Infiltration Effect on Thermal Stress Distributions -," J. Ceram. Soc. Jpn., 112 172-78 (2004). https://doi.org/10.2109/jcersj.112.172
  47. D. P. H. Hasselman, E. P. Chen, and P. A. Urick, "Prediction of the Thermal Fatigue Resistance of Indented Glass Rods," Am. Ceram. Soc. Bull., 57 190-92 (1978).
  48. F. Osterstock, "Contact Damage Submitted to Thermal Shock: a Method to Evaluate and Simulate Thermal Shock Resistance of Brittle Materials," Mater. Sci. and Enging., A168 41-44 (1993).
  49. S. R. Choi and J. A. Salem, "Thermal Shock Behavior of Silicon Nitride Flexure Beam Specimens with Indentation Cracks," J. Am. Ceram. Soc., 77 [3] 833-38 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb05373.x
  50. T. Andersson and D. J. Rowcliffe, "Indentation Thermal Shock Test for Ceramics," J. Am. Ceram. Soc., 79 [6] 1509-14 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08758.x
  51. S-K. Lee, J. D. Moretti, M. J. Readey, and B. R. Lawn, "Thermal Shock Resistance of Silicon Nitrides Using an Indentation-Quench Test," J. Am. Ceram. Soc., 85 [1] 279-81 (2002).
  52. P. Pettersson, M. Johnsson and Z. Shen, "Parameters for Measuring the Thermal Shock of Ceramic Materials with an Indentation-Quench Method," J. Eur. Ceram. Soc., 22 1883-89 (2002). https://doi.org/10.1016/S0955-2219(01)00504-0
  53. R. Uribe and C. Baudín, "Influence of a Dispersion of Aluminum Titanate Particles of Controlled Size on the Thermal Shock Resistance of Alumina," Am. Ceram. Soc., 86 846-50 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03385.x
  54. A. Kovalcikova, J. Dusza, and P. Sajgalik, "Thermal Shock Resistance and Fracture Toughness of Liquid-Phase-Sintered SiC-based Ceramics," J. Eur. Ceram. Soc., 29 2387-94 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.01.021
  55. G. D. Quinn and R. C. Bradt, "On the Vickers Indentation Fracture Toughness Test," J. Am. Ceram. Soc., 90 673-80 (2007). https://doi.org/10.1111/j.1551-2916.2006.01482.x
  56. M. Nawa, K. Yamazaki, T. Sekino, and K. Niihara, "Microstructure and Mechanical Behavior of 3Y-TZP/Mo Nanocomposites Possessing a Novel Interpenetrated Intragranular Microstructure," J. Mater. Sci., 31 2849-58 (1996). https://doi.org/10.1007/BF00355992
  57. S. Sato, K. Sato, Y. Imamura, and J. Kon, "Determination of the Thermal Shock Resistance of Graphite by Arc Discharge Heating," Carbon, 13 309-16 (1975). https://doi.org/10.1016/0008-6223(75)90035-4
  58. S. Sato, H. Awaji, and H. Akuzawa, "Evaluation of the Thermal Shock Fracture Toughness of Reactor Graphites by Arc Discharge Heating," Carbon, 16 103-09 (1978). https://doi.org/10.1016/0008-6223(78)90005-2
  59. C. Schubert, H. A. Bahr, and H. J. Weiss, "Crack Propagation and Thermal Shock Damage in Graphite Disks Heated by Moving Electron Beam," Carbon, 24 [1] 21-28 (1986). https://doi.org/10.1016/0008-6223(86)90205-8
  60. R. Benz, A. Naoumidis, and H. Nickel, "Thermal Shock Testing of Ceramics with Pulsed Laser Irradiation," J. Nucl. Mater., 150 128-39 (1987). https://doi.org/10.1016/0022-3115(87)90069-9
  61. S. Akiyama, S. Amada, M. Shimada, and T. Yoshii, "Estimation of Thermal Shock Resistance of $Al_2O_3$ Ceramics by Laser Irradiation," JSME Int. J., Ser. A, 38 [4] 594-600 (1995).
  62. S. Amada, W. Y. Nong, Q. Z. Min, and S. Akiyama, "Thermal Shock Resistance of Carbon-Carbon (C/C) Composites by Laser Irradiation Technique,"Ceram. Int., 25 61-67 (1999). https://doi.org/10.1016/S0272-8842(98)00002-9
  63. J-H. Kim, Y-S. Lee, D-H. Kim, N-S. Park, J. Suh, J-O. Kim, and S-I. Moon, "Evaluation of Thermal Shock Strength for Graphite Materials Using a Laser Irradiation Method," Mater. Sci. & Eng., A 387-389 385-89 (2004). https://doi.org/10.1016/j.msea.2004.01.136
  64. G. C. Wei and J. Walsh, "Hot-Gas-Jet Method and Apparatus for Thermal-Shock Testing," J. Am. Ceram. Soc., 72 [7] 1286-89 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb09730.x
  65. J. Lamon and D. Pherson, "Thermal Stress Failure of Ceramics under Repeated Rapid Heatings," J. Am. Ceram. Soc., 74 [6] 1188-96 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb04087.x
  66. G. A. Schneider and G. Petzow, "Thermal Shock Testing of Ceramics - A New Testing Method," J. Am. Ceram. Soc., 74 [1] 98-02 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb07303.x
  67. H. Awaji and T. Endo, "Thermal Shock Fracture Testing for Float Glass by Infrared Radiation Technique (in Jpn)," J. Ceram. Soc. Jpn, 103 [9] 960-65 (1995). https://doi.org/10.2109/jcersj.103.960
  68. H. Awaji, S. Honda, and T. Nishikawa, "Thermal Shock Parameters of Ceramics Evaluated by Infrared Radiation Heating," JSME Int. J., Series A, 40 [4] 414-22 (1997). https://doi.org/10.1299/jsmea.40.414
  69. T. Endo, Japanese Utility Model Registration Application No. 59-79600, March 31, 1984.
  70. T. Endo, Japanese Patent Application No. 60-50437, March 15, 1985.
  71. S.S. Manson, "Behavior of Materials Under Conditions of Thermal Stress," NACA TN 2933 317-50 (1953).
  72. R. L. Coble and W. D. Kingery, "Effect of Porosity on Thermal Stress Fracture," J. Am. Ceram. Soc., 38 33-37 (1955). https://doi.org/10.1111/j.1151-2916.1955.tb14549.x
  73. Y. W. May and A. G. Atkins, "Fracture Toughness and Thermal Shock of Tool and Turbine Ceramics," J. Mater. Sci., 10 1904-19 (1973).
  74. D. Lewis, "Comparison of Critical ${\Delta}T_c$ Values in Thermal Shock with the R Parameter," J. Am. Ceram. Soc., 63 713-714 (1980). https://doi.org/10.1111/j.1151-2916.1980.tb09868.x
  75. K. Anzai and H. Hashimoto, "Thermal Shock Resistance of Silicon Nitride," J. Mater. Sci., 12 2351-53 (1997).
  76. S. P. Timoshenko and J. N. Goodier, "Theory of Elasticity", pp.433-84, McGraw-Hill Book Co., New York, 1934.
  77. S. Honda, T. Takahashi, S. Morooka, S. Zhang, T. Nishikawa, and H. Awaji, "Thermal Stress and Stress Intensity Factor Considering Temperature Dependent Material Properties (in Jpn)," J. Soc. Mater. Sci. Jpn, 46 1300-05 (1997) . https://doi.org/10.2472/jsms.46.1300
  78. H. Awaji, H-J. Xian, H. Tanaka, and S. Honda, "Water-Flow Cooling and Infrared Radiation Heating Techniques for Thermal Shock Test of Ceramics," pp. 557-60, Proc. sixth international congress on thermal stresses, May 26-29, Vienna, 2005.
  79. W. P. Rogers, A. F. Emery, R. C. Bradt, and A. S. Kobayashi, "Statistical Study of Thermal Fracture of Ceramic Materials in the Water Quench Test," J. Am. Ceram. Soc., 70 [6] 406-12 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb05660.x
  80. T. Sakuma, U. Iwata, and H. Takaku, "Estimation of Thermal Shock Resistance of Ceramics (4th Report) (in Jpn)," Trans. JSME, 58A 1424-29 (1992).
  81. W-J. Lee, Y. Kim, and E. D. Case, "The Effect of Quenching Media on the Heat Transfer Coefficient of Polycrystalline Alumina," J. Mater. Sci., 28 2079-83 (1993). https://doi.org/10.1007/BF00367565
  82. T. Nishikawa, T, Gao, M. Hibi, and M. Takatsu, "Heat Transmission during Thermal Shock Testing of Ceramics," J. Mater., Sci., 29 213-17 (1994). https://doi.org/10.1007/BF00356595
  83. R. Badaliance, D. A. Krohn, and D. P. H. Hasselman,"Effect of Slow Crack Growth on the Thermal-Stress Resistance of an $Na_2O-CaO-SiO_2$ Glass," J. Am. Ceram. Soc., 57 432-36 (1974). https://doi.org/10.1111/j.1151-2916.1974.tb11375.x
  84. H. Awaji, S. Honda, and T. Nishikawa, "Statistical Approach to Strength Degradation Analysis during Water Quenching," J. Ceram. Soc. Jpn, 106 [6] 551-54 (1998). https://doi.org/10.2109/jcersj.106.551
  85. M. Oguma and T. Motomiya, "A BET Surface Area Measurement Technique for Evaluation of Crack Extension in Alumina Pellets Subjected to Thermal Shock," J. Ceram. Soc. Jpn, 97 778-82 (1989). https://doi.org/10.2109/jcersj.97.778
  86. M. Hefetz and S. I. Rokhlin, "Thermal Shock Damage Assessment in Ceramics Using Ultrasonic Waves," J. Am. Ceram. Soc., 75 [7] 1839-45 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb07205.x
  87. D. N. Boccaccini, M. Romagnoli, P. Veronesi, M. Cannio, C. Leonelli, G. Pellacani, T. V. Husovic, and A. R. Boccaccini, "Quality Control and Thermal Shock Damage Characterization of High-Temperature Ceramics by Ultrasonic Pulse Velocity Testing," Int. J. Appl. Ceram.Technol., 4 [3] 260-68 (2007). https://doi.org/10.1111/j.1744-7402.2007.02139.x
  88. W. J. Lee and E. D. Case, "Thermal Fatigue in Polycrystalline Alumina," J. Mater. Sci., 25 5043-54 (1990). https://doi.org/10.1007/BF00580128
  89. F. Mignard, C. Olagnon, and G. Fantozzi, "Acoustic Emission Monitoring of Damage Evaluation in Ceramics Submitted to Thermal Shock," J. Eur. Ceram. Soc., 15 651-53 (1995). https://doi.org/10.1016/0955-2219(95)00032-P
  90. F. Mignard, C. Olagnon, M. Saadaoui, and G. Fantozzi, "Thermal Shock Behavior of a Coarse Grain Porous Alumina," J. Mater. Sci., 31 2437-41 (1996). https://doi.org/10.1007/BF01152958
  91. L. J. Vandeperre, A. Kristfferson, E. Carlsröm, and W. J. Clegg, "Thermal Shock of Layered Ceramic Structures with Crack-Deflecting Interfaces," J. Am. Ceram. Soc., 84 104-10 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00615.x
  92. D. Sherman, "Alumina/NiCu Laminate under Thermal Shock up to 1000C: I, Experimental," J. Am. Ceram. Soc., 84 2819-26 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb01099.x
  93. K. Kokini, J. DeJonge, S. Rangaraj, and B. Beardsley, "Thermal Shock of Functionally Graded Thermal Barrier Coatings with Similar Thermal Resistance," Surface & Coatings Tech., 154 223-31 (2002). https://doi.org/10.1016/S0257-8972(02)00031-2
  94. A. Kawasaki and R. Watanabe, "Thermal Fracture Behavior of Metal/Ceramic Functionally Graded Materials," Eng. Fract. Mech., 69 1713-28 (2002). https://doi.org/10.1016/S0013-7944(02)00054-1
  95. B-L. Wang, Y-W. Mai, and X-H. Zhang, "Thermal Shock Resistance of Functionally Graded Materials," Acta Mater., 52 4961-72 (2004). https://doi.org/10.1016/j.actamat.2004.06.008
  96. G. Jin, M. Takeuchi, S. Honda, T. Nishikawa, and H. Awaji, "Thermal Shock Testing on Mullite/Mo FGM Disks Using an Infrared Radiation/Water Flow Technique," J. Ceram. Soc. Jpn, Supplement, 112 S286-S290 (2004).
  97. G. Jin, M. Takeuchi, S. Honda, T. Nishikawa, and H. Awaji, "Properties of Multilayered Mullite/Mo Functionally Graded Materials Fabricated by Powder Metallurgy Processing," Mater. Chem. & Phys., 89 238-43 (2005). https://doi.org/10.1016/j.matchemphys.2004.03.031
  98. V. R. Vedula, S. J. Glass, D. M. Saylor, G. S. Rohrer, W. C. Carter, S. A. Langer, and E. R. Fuller Jr., "Residual-Stress Predictions in Polycrystalline Alumina," J. Am. Ceram. Soc., 84 2947-54 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb01119.x
  99. T. K. Gupta, "Strength Degradation and Crack Propagation in Thermally Shocked $Al_2O_3$," J. Am. Ceram. Soc., 55 [5] 249-53 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb11273.x
  100. A. G. Evans, "Microfracture from Thermal Expansion Anisotropy - I. Single Phase Systems," Acta Metallurgica, 26 1845-53 (1978). https://doi.org/10.1016/0001-6160(78)90097-4
  101. A. Zimmermann, E. R. Fuller Jr., and J. Rödel, "Residual Stress Distributions in Ceramics," J. Am. Ceram. Soc., 82 3155-60 (1999).
  102. H. Awaji, T. Matsunaga, and S-M. Choi, "Relation between Strength, Fracture Toughness, and Critical Frontal Process Zone Size in Ceramics," Mater. Trans., 47 [6] 1532-39 (2006). https://doi.org/10.2320/matertrans.47.1532
  103. K. Niihara, "New Design Concept of Structural Ceramics - Ceramic Nanocomposites-," J. Ceram. Soc. Jpn, 99 974-82 (1991). https://doi.org/10.2109/jcersj.99.974
  104. H. Awaji, "Ceramic-Based Nanocomposites," "Handbook of Nanoceramics and their based Nanodevices, Vol. 2", pp. 231-251, Ed. by T-Y. Tseng and H. S. Nalwa, Am. Sci. Pub, Los Angeles, 2009.
  105. H. Okamura, "Senkei Hakairikigaku Nyuumon (Introduction to Linear Fracture Mechanics) (in Jpn)", p.76 , Baifukan, Tokyo, 1976.
  106. S-M. Choi and H. Awaji, "Nanocomposites - a New Material Design Concept," Sci. & Tech. Advanced Mater., 6 2-10 (2005). https://doi.org/10.1016/j.stam.2004.07.001

Cited by

  1. Glassy Carbon: A Promising Material for Micro- and Nanomanufacturing vol.11, pp.10, 2018, https://doi.org/10.3390/ma11101857
  2. Pre-ignition laser ablation of nanocomposite energetic materials vol.113, pp.21, 2012, https://doi.org/10.1063/1.4808458