DOI QR코드

DOI QR Code

Effects of Cu and Ag Addition on Nanocluster Formation Behavior in Al-Mg-Si Alloys

  • Kim, Jae-Hwang (Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology) ;
  • Tezuka, Hiroyasu (Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology) ;
  • Kobayashi, Equo (Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology) ;
  • Sato, Tatsuo (Precision and Intelligence Laboratory, Tokyo Institute of Technology)
  • Received : 2012.06.12
  • Accepted : 2012.06.18
  • Published : 2012.07.27

Abstract

Two types of nanoclusters, termed Cluster (1) and Cluster (2) here, both play an important role in the age-hardening behavior in Al-Mg-Si alloys. Small amounts of additions of Cu and Ag affect the formation of nanoclusters. Two exothermic peaks were clearly detected in differential scanning calorimetry(DSC) curves by means of peak separation by the Gaussian method in the base, Cu-added, Ag-added and Cu-Ag-added Al-Mg-Si alloys. The formation of nanoclusters in the initial stage of natural aging was suppressed in the Ag-added and Cu-Ag-added alloys, while the formation of nanoclusters was enhanced at an aging time longer than 259.2 ks(3 days) of natural aging with the addition Cu and Ag. The formation of nanoclusters while aging at $100^{\circ}C$ was accelerated in the Cu-added, Ag-added and Cu-Ag-added alloys due to the attractive interaction between the Cu and Ag atoms and the Mg atoms. The influence of additions of Cu and Ag on the clustering behavior during low-temperature aging was well characterized based on the interaction energies among solute atoms and on vacancies derived from the first-principle calculation of the full-potential Korrinaga-Kohn-Rostoker(FPKKR)-Green function method. The effects of low Cu and Ag additions on the formation of nanoclusters were also discussed based on the age-hardening phenomena.

Keywords

References

  1. K. Yamada, T. Sato and A. Kamio, J. Jpn. Inst. Light Met., 51(4), 215 (2001) (in Japanese). https://doi.org/10.2464/jilm.51.215
  2. A. Serizawa, S. Hirosawa and T. Sato, Metall. Mater. Trans. A, 39A, 243 (2008).
  3. A. Serizawa, T. Sato and W. J. Poole, Phil. Mag. Lett., 90, 279 (2010). https://doi.org/10.1080/09500831003633231
  4. J. Kim, E. Kobayashi and T. Sato, Mater. Trans., 52(5), 906 (2011). https://doi.org/10.2320/matertrans.L-MZ201121
  5. S. Esmaeili, X. Wang, D. J. Lloyd and W. J. Poole, Metall. Mater. Trans. A, 34A, 751 (2003).
  6. K. Matsuda, K. Kido, T. Kawabata, Y. Uetani and S. Ikeno, J. Jpn. Inst. Light Met., 53, 528 (2003) (in Japanese). https://doi.org/10.2464/jilm.53.528
  7. Y. Baba and A. Takashima, J. Jpn. Inst. Light Met., 19(3), 90 (1969) (in Japanese). https://doi.org/10.2464/jilm.19.90
  8. C. Cayron, L. Sagalowicz, O. Beffort and P. A. Buffat, Phil. Mag. A, 79(11), 2833 (1999). https://doi.org/10.1080/01418619908212027
  9. K. Matsuda, S. Ikeno, Y. Uetani and T. Sato, Metall. Mater. Trans. A, 32A, 1293 (2001).
  10. D. J. Chakrabarti and D. E. Laughlin, Progr. Mater. Sci., 49, 389 (2004).
  11. C. D. Marioara, S. J. Andersen, T. N. Stene, H. Hasting, J. Walmsley, A. T. J. Van Helvoort and R. Holmestad, Phil. Mag., 87(23), 3385 (2007). https://doi.org/10.1080/14786430701287377
  12. K. Matsuda, , S. Ikeno, T. Sato and Y. Uetani, Scripta Mater., 55, 127 (2006). https://doi.org/10.1016/j.scriptamat.2006.03.064
  13. J. Nakamura, K. Matsuda, T. Kawabata, T. Sato, Y. Nakamura and S. Ikeno, Mater. Trans., 51(2), 310 (2010). https://doi.org/10.2320/matertrans.MC200911
  14. C. D. Marioara, J. Nakamura, K. Matsuda, S. J. Andersen, R. Holmestad, T. Sato, T. Kawabata and S. Ikeno, Phil. Mag., 92(9), 1149 (2012). https://doi.org/10.1080/14786435.2011.642319
  15. T. Sato, S. Hirosawa, K. Hirose and T. Maeguchi, Metall. Mater. Trans. A, 34A, 2745 (2003).
  16. C. S. T. Chang and J. Banhart, Metall. Mater. Trans. A, 42A, 1960 (2011).
  17. J. Banhart, C. S. T. Chang, Z. Liang, N. Wanderka, M. D. H. Lay and A. J. Hill, Adv. Eng. Mater., 12, 559 (2010). https://doi.org/10.1002/adem.201000041
  18. J. Banhart, M. D. H. Lay, C. S. T. Chang and A. J. Hill, Phys. Rev. B, 83, 014101 (2011). https://doi.org/10.1103/PhysRevB.83.014101
  19. A. K. Gupta and D. J. Lloyd. Metall. Mater. Trans. A, 30, 879 (1999). https://doi.org/10.1007/s11661-999-1021-9
  20. A. Serizawa, W. J. Poole and T. Sato, Aluminium Alloys (ICAA-11) Vol. 1, p. 915, edited by J. Hirsch, B. Skrotzki, G. Gottstein, Wiley-VCH, USA (2008).
  21. T. Maeguchi, K. Yamada and T. Sato, J. Jpn Inst. Metal., 66(3), 127 (2002) (in Japanese). https://doi.org/10.2320/jinstmet1952.66.3_127
  22. T. Hoshino and F. Nakamura, J. Metastable Nanocrystalline Materials, 24-25, 237 (2005). https://doi.org/10.4028/www.scientific.net/JMNM.24-25.237
  23. S. Hirosawa, T. Omura, Y. Suzuki, T. Sato, Mater. Sci. Forum, 519-521, 215 (2006). https://doi.org/10.4028/www.scientific.net/MSF.519-521.215
  24. T. Hoshino, W. Schweika, R. Zeller and P. H. Dederichs, Phys. Rev. B, 47, 5106 (1993). https://doi.org/10.1103/PhysRevB.47.5106
  25. M. Asato and T. Hoshino J. Jpn Inst. Metal., 63(6), 676 (1999) (in Japanese). https://doi.org/10.2320/jinstmet1952.63.6_676
  26. T. Hoshino, T. Mizuno, M. Asato and H. Fukushima, Mater. Trans., 42, 2206 (2001). https://doi.org/10.2320/matertrans.42.2206
  27. M. Asato, T. Mizuno, T. Hoshino and H. Sawada, Mater. Trans., 42, 2216 (2001). https://doi.org/10.2320/matertrans.42.2216
  28. S. Hirosawa, F. Nakamura, T. Sato and T. Hoshino, J. Jpn. Inst. Light Met., 56(11), 621 (2006) (in Japanese). https://doi.org/10.2464/jilm.56.621
  29. S. Hirosawa, F. Nakamura and T. Sato, Mater. Sci. Forum, 561-565, 283 (2007). https://doi.org/10.4028/www.scientific.net/MSF.561-565.283
  30. T. Sato, K. Hirose and S. Hirosawa, in Proceedings of the 9th International Conference on Aluminum Alloys(Brisbane, Australia, August 2004), ed. J. F. Nie, A. J. Morton and B. C. Muddle(Institute of Materials Engineering Australasia), p. 956.
  31. Y. Komiya, S. Hirosawa and T. Sato, Mater. Sci. Forum, 519-521, 437 (2006). https://doi.org/10.4028/www.scientific.net/MSF.519-521.437
  32. T. Ogura, S. Hirosawa, A. Cerezo and T. Sato, Mater. Sci. Forum, 519-521, 431 (2006). https://doi.org/10.4028/www.scientific.net/MSF.519-521.431
  33. C. Wolverton, Acta Mater., 55, 5867 (2007). https://doi.org/10.1016/j.actamat.2007.06.039
  34. H. Kimura and R. K. Hasiguti, Acta Metall., 9, 1076 (1961). https://doi.org/10.1016/0001-6160(61)90179-1
  35. M. Torsaeter, Ph. D. Thesis, p. 101-105, Norwegian University of Science and Technology, Trondheim (2011).
  36. K. Osamura, Y. Hiraoka and Y. Murakami, Phil. Mag., 28(4), 809 (1973). https://doi.org/10.1080/14786437308220985
  37. M. Yokota and K. Sato, J. Jpn. Inst. Light Met., 32(8), 432 (1982) (in Japanese). https://doi.org/10.2464/jilm.32.432

Cited by

  1. Thermal Stability and Transition Behavior of Nanoclusters during Two-Step Aging at 250°C in Al–Mg–Si(–Cu) Alloys vol.55, pp.5, 2014, https://doi.org/10.2320/matertrans.M2013411
  2. Effects of Germanium, Copper, and Silver Substitutions on Hardness and Microstructure in Lean Al-Mg-Si Alloys vol.46, pp.9, 2015, https://doi.org/10.1007/s11661-015-3039-5
  3. Effect of Copper Addition on the Cluster Formation Behavior of Al-Mg-Si, Al-Zn-Mg, and Al-Mg-Ge in the Natural Aging vol.49, pp.11, 2018, https://doi.org/10.1007/s11661-018-4832-8