DOI QR코드

DOI QR Code

Synthesis and Conductive Properties of Li1+xAlxTi2-x(PO4)3 (x = 0, 0.3, 0.5) by Sol-Gel Method

Sol-Gel법에 의한 Li1+xAlxTi2-x(PO4)3 (x = 0, 0.3, 0.5)의 합성 및 전도특성

  • Moon, Jung-In (Department of Materials Science and Engineering, Graduate School of PaiChai University) ;
  • Cho, Hong-Chan (Department of Applied Chemistry, Graduate School of Kyushu Institute of Technology) ;
  • Song, Jeong-Hwan (Department of Information and Electronic Materials Engineering, PaiChai University)
  • 문정인 (배재대학교 대학원 재료공학과) ;
  • 조홍찬 (큐슈공업대학 응용화학과) ;
  • 송정환 (배재대학교 정보전자소재공학과)
  • Received : 2012.06.11
  • Accepted : 2012.06.28
  • Published : 2012.07.27

Abstract

$Li_{1+x}Al_xTi_{2-x}(PO_4)_3$(LATP) is a promising solid electrolyte for all-solid-state Li ion batteries. In this study, LATP is prepared through a sol-gel method using relatively the inexpensive reagents $TiCl_4$. The thermal behavior, structural characteristics, fractured surface morphology, ion conductivity, and activation energy of the LATP sintered bodies are investigated by TG-DTA, X-ray diffraction, FE-SEM, and by an impedance method. A gelation powder was calcined at $500^{\circ}C$. A single crystalline phase of the $LiTi_2(PO_4)_3$(LTP) system was obtained at a calcination temperature above $650^{\circ}C$. The obtained powder was pelletized and sintered at $900^{\circ}C$ and $1000^{\circ}C$. The LTP sintered at $900{\sim}1000^{\circ}C$ for 6 h had a relatively low apparent density of 75~80%. The LATP(x = 0.3) pellet sintered at $900^{\circ}C$ for 6 h was denser than those sintered under other conditions and showed the highest ion conductivity of $4.50{\times}10^{-5}$ S/cm at room temperature. However, the ion conductivity of LATP (x = 0.3) sintered at $1000^{\circ}C$ decreased to $1.81{\times}10^{-5}$ S/cm, leading to Li volatilization and abnormal grain growth. For LATP sintered at $900^{\circ}C$ for 6 h, x = 0.3 shows the lowest activation energy of 0.42 eV in the temperature range of room temperature to $300^{\circ}C$.

Keywords

References

  1. P. Knauth, Solid State Ionics, 180, 911 (2009). https://doi.org/10.1016/j.ssi.2009.03.022
  2. T. Hiroo and T. Hitoshi, Mater. Trans., 53(5), 932 (2012). https://doi.org/10.2320/matertrans.MBW201111
  3. P. Fabry, J. P. Gros. J. F. Million-Brodaz and M. Kleitz, Sensor. Actuator., 15, 33 (1988). https://doi.org/10.1016/0250-6874(88)85016-9
  4. X. Xu, Z. Wen, X. Yang, J. Zhang and Z. Gu, Solid State Ionics, 177, 2611 (2006). https://doi.org/10.1016/j.ssi.2006.04.010
  5. T. Iwahori, Y. Ozaki, A. Funahashi, H. Momose, I. Mitsuishi, S. Shiraga, S. Yoshitake and H. Awata, J. Power Sourc., 81-82, 872 (1999). https://doi.org/10.1016/S0378-7753(98)00245-6
  6. J. B. Bates, N. J. Dudney, B. Neudecker, A. Ueda and C. D. Evans, Solid State Ionics, 135, 33 (2000). https://doi.org/10.1016/S0167-2738(00)00327-1
  7. P. Maldonado-Manso, E. R. Losilla, M. Martinez-Lara, M. A. G. Aranda, S. Bruque, F. E. Mouahid and M. Zahir, Chem. Mater., 15, 1879 (2003). https://doi.org/10.1021/cm021717j
  8. J. Fu, J. Mater. Sci., 33, 1549 (1998). https://doi.org/10.1023/A:1017559619391
  9. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka and G. Adachi, J. Electrochem. Soc., 137, 1023 (1990). https://doi.org/10.1149/1.2086597
  10. K. Arbi, S. Mandal, J. M. Rojo and J. Sanz, Chem. Mater., 14, 1091 (2002). https://doi.org/10.1021/cm010528i
  11. J. S. Thokchom and B. Kumar, Solid State Ionics, 177, 727 (2006). https://doi.org/10.1016/j.ssi.2006.01.027
  12. N. V. Kosova, E. T. Devyatkina, A. P. Stepanov and A. L. Buzlukov, Ionics, 14, 303 (2008). https://doi.org/10.1007/s11581-007-0197-5
  13. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka and G. Adachi, J. Electrochem. Soc., 140, 1827 (1993). https://doi.org/10.1149/1.2220723
  14. X. Xu, Z. Wen, J. Wu and X. Yang, Solid State Ionics, 178, 29 (2007). https://doi.org/10.1016/j.ssi.2006.11.009
  15. M. Cretin and P. Fabry, J. Eur. Ceram. Soc., 19, 2931 (1999). https://doi.org/10.1016/S0955-2219(99)00055-2
  16. X. M. Wu, J. L. Liu, S. Chen, M. Y. Ma and J. B. Liu, Ionics, 16, 827 (2010). https://doi.org/10.1007/s11581-010-0471-9
  17. X. M. Wu, X. H. Li, Y. H. Zhang, M. F. Xu and Z. Q. He, Mater. Lett., 58, 1227 (2004). https://doi.org/10.1016/j.matlet.2003.09.013
  18. C. J. Brinker and G. W. Scherer, Sol-gel Science: The Physics and Chemistry of Sol-gel Processing, p. 745-786, Academic Press, Boston, USA (1990).
  19. J. L. Narvaez-Semanate and A. C. M. Rodrigues, Solid State Ionics, 181, 1197 (2010). https://doi.org/10.1016/j.ssi.2010.05.010
  20. J. Maier, Solid State Ionics, 131, 13 (2000). https://doi.org/10.1016/S0167-2738(00)00618-4
  21. J. Schoonman, Solid State Ionics, 135, 5 (2000). https://doi.org/10.1016/S0167-2738(00)00324-6
  22. P. Heitjans and S. Indris, J. Phys. Condens. Matter., 15, R1257 (2003). https://doi.org/10.1088/0953-8984/15/30/202

Cited by

  1. Fabrication of Stack-Structured Gas Sensor of LaCrxCo1-xO3/ Li1.3Al0.3Ti1.7(PO4)3 and Its NOx Sensing Properties vol.25, pp.8, 2015, https://doi.org/10.3740/MRSK.2015.25.8.423