DOI QR코드

DOI QR Code

Magnetite Nanoparticles Dispersed in Hybrid Aerogel for Hyperthermia Application

하이퍼써미아 응용을 위한 하이브리드 에어로젤 내 분산된 마그네타이트 나노입자

  • Lee, Eun-Hee (Nano-IT Convergence Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Choa, Yong-Ho (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Chang-Yeoul (Nano-IT Convergence Center, Korea Institute of Ceramic Engineering & Technology)
  • 이은희 (한국세라믹기술원 나노IT융합센터) ;
  • 좌용호 (한양대학교 융합화학공학과) ;
  • 김창열 (한국세라믹기술원 나노IT융합센터)
  • Received : 2012.06.01
  • Accepted : 2012.07.02
  • Published : 2012.07.27

Abstract

Magnetite nanoparticles(NPs) have been the subject of much interest by researchers owing to their potential use as magnetic carriers in drug targeting and as a tumor treatment in cases of hyperthermia. However, magnetite nanoparticles with 10 nm in diameter easily aggregate and thus create large secondary particles. To disperse magnetite nanoparticles, this study proposes the infiltration of magnetite nanoparticles into hybrid silica aerogels. The feasible dispersion of magnetite is necessary to target tumor cells and to treat hyperthermia. Magnetite NPs have been synthesized by coprecipitation, hydrothermal and thermal decomposition methods. In particular, monodisperse magnetite NPs are known to be produced by the thermal decomposition of iron oleate. In this study, we thermally decomposed iron acetylacetonate in the presence of oleic acid, oleylamine and 1,2 hexadecanediol. We also attempted to disperse magnetite NPs within a mesoporous aerogels. Methyltriethoxysilicate(MTEOS)-based hybrid silica aerogels were synthesized by a supercritical drying method. To incorporate the magnetite nanoparticles into the hybrid aerogels, we devised two methods: adding the synthesized aerogel into a magnetite precursor solution followed by nucleation and crystal growth within the pores of the aerogels, and the infiltration of magnetite nanoparticles synthesized beforehand into aerogel matrices by immersing the aerogels in a magnetite nanoparticle colloid solution. An analysis using a vibrating sample magnetometer showed that approximately 20% of the magnetite nanoparticles were well dispersed in the aerogels. The composite samples showed that heating under an inductive magnetic field to a temperature of $45^{\circ}C$ is possible.

Keywords

References

  1. S. P. Gubin, Magnetic Nanoparticles, p. 419, Wiley-VCH GmbH &Co. KGaA, Winheim, Germany (2009).
  2. V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield and J. C. Bischof, Nanotechnology, 16, 1221 (2005). https://doi.org/10.1088/0957-4484/16/8/041
  3. C. Tsang, T. Lin, S. Macdonald, M. Pinarbasi, N. Robertson, H. Santini, M. Doerner, T. Reith, V. Lang, T. Diola and P. Arnett, IEEE Trans. Magn., 33, 2866 (1997). https://doi.org/10.1109/20.617781
  4. J. -M. Nam, C. S. Thaxton and C. A. Mirkin, Science, 301, 1884 (2003). https://doi.org/10.1126/science.1088054
  5. P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno and C. J Serna, J. Phys. Appl. Phys., 36, R182 (2003). https://doi.org/10.1088/0022-3727/36/13/202
  6. P. Gould, Mater. Today, 7(2), 36 (2004). https://doi.org/10.1016/S1369-7021(04)00082-3
  7. D. S. Kil, H. D. Jang, H. Chang, K. Cho, S. K. Kim, K. J. Oh and J. H. Choi, Kor. J. Mater. Res., 20(2), 78 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.2.78
  8. H. H. Kim, H. Park and K. N. Kim, Kor. J. Mater. Res., 20(5), 252 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.5.252
  9. T. H. Eom, H. T. Tuan, S. J. Kim, S. J. An, K. H. Oh and D. S. Suhr, Kor. J. Mater. Res., 21(4), 225 (2011) (in Korean). https://doi.org/10.3740/MRSK.2011.21.4.225
  10. W. S. Park, K. H. Oh, S. J. An and D. S. Suhr, Kor. J. Mater. Res., 22(5), 253 (2012) (in Korean).
  11. J. H. Son and D. S. Bae, Kor. J. Mater. Res., 22(6), 298 (2012). https://doi.org/10.3740/MRSK.2012.22.6.298
  12. J. Park, K. An, Y. Hwang, J. -G. Park, H. -J. Noh, J. -Y. Kim, J. -H. Park, N. -M. Hwang and T. Hyeon, Nat. Mater., 3, 891 (2004). https://doi.org/10.1038/nmat1251
  13. J. Xie, S. Peng, N. Brower, N. Pourmand, S. X. Wang and S. Sun, Pure Appl. Chem., 78, 1003 (2006). https://doi.org/10.1351/pac200678051003
  14. E. H. Lee, C. Y. Kim and Y. H. Choa, Curr. Appl., Phys., (2012) (in Press). http://dx.doi.org/10.1016/j.cap.2012.02.017.
  15. S. M. Kim, K. Chakrabarti, E. O. Oh and C. M. Whang, J. Sol-Gel Sci. Technol., 27, 149 (2003). https://doi.org/10.1023/A:1023794300032