DOI QR코드

DOI QR Code

Fabrication of Photocatalyst Glass Beads Coated with TiO2 Thin Film by a Layer-by-Layer Process

LBL법에 의해 TiO2막이 코팅된 광촉매 글라스 비드 제조

  • Lee, Ji-Sun (Korea Institute of Ceramic Engineering and Technology, Electronic & Optic Material Center) ;
  • Chae, Yoo-Jin (Korea Institute of Ceramic Engineering and Technology, Electronic & Optic Material Center) ;
  • Lee, Mi-Jai (Korea Institute of Ceramic Engineering and Technology, Electronic & Optic Material Center) ;
  • Kim, Sei-Ki (Korea Institute of Ceramic Engineering and Technology, Electronic & Optic Material Center) ;
  • Hwang, Jong-Hee (Korea Institute of Ceramic Engineering and Technology, Electronic & Optic Material Center) ;
  • Lim, Tae-Young (Korea Institute of Ceramic Engineering and Technology, Electronic & Optic Material Center) ;
  • Hyun, Soong-Keun (Department of Materials science and Engineering, Inha University) ;
  • Kim, Jin-Ho (Korea Institute of Ceramic Engineering and Technology, Electronic & Optic Material Center)
  • 이지선 (한국세라믹기술원 전자.광소재센터) ;
  • 채유진 (한국세라믹기술원 전자.광소재센터) ;
  • 이미재 (한국세라믹기술원 전자.광소재센터) ;
  • 김세기 (한국세라믹기술원 전자.광소재센터) ;
  • 황종희 (한국세라믹기술원 전자.광소재센터) ;
  • 임태영 (한국세라믹기술원 전자.광소재센터) ;
  • 현승균 (인하대학교 금속공학과) ;
  • 김진호 (한국세라믹기술원 전자.광소재센터)
  • Received : 2012.06.18
  • Accepted : 2012.07.05
  • Published : 2012.07.27

Abstract

$TiO_2$ thin films consisting of positively charged poly(diallyldimethylammonium chloride)(PDDA) and negatively charged titanium(IV) bis(ammonium lactato) dihydroxide(TALH) were successfully fabricated on glass beads by a layer-by-layer(LBL) self-assembly method. The glass beads used here showed a positive charge in an acid range and negative charge in an alkaline range. The glass beads coated with the coating sequence of(PDDA/TALH)n showed a change in the surface morphology as a function of the number of bilayers. When the number of bilayers(n) of the(PDDA/TALH) thin film was 20, Ti element was observed on the surface of the coated glass beads. The thin films coated onto the glass beads had a main peak of the (101) crystal face and were highly crystallized with XRD diffraction peaks of anatase-type $TiO_2$ according to an XRD analysis. In addition, the $TiO_2$ thin films showed photocatalytic properties such that they could decompose a methyl orange solution under illumination with UV light. As the number of bilayers of the(PDDA/TALH) thin film increased, the photocatalytic property of the $TiO_2$-coated glass beads increased with the increase in the thin film thickness. The surface morphologies and optical properties of glass beads coated with $TiO_2$ thin films with different coating numbers were measured by field emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD) and by UV-Vis spectrophotometry(UV-vis).

Keywords

References

  1. E. T. Fitzgibbons, K. J. Sladek and W. H. Hartwig, J. Electrochem. Soc., 119, 735 (1972). https://doi.org/10.1149/1.2404316
  2. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, Adv. Mater., 10, 135 (1998). https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<135::AID-ADMA135>3.0.CO;2-M
  3. F. Saylkan, M. Asilturk, P. Tater, N. Kiraz, S. Sener, E. Arpac and H. Saylkan, Mater. Res. Bull., 43, 127 (2008). https://doi.org/10.1016/j.materresbull.2007.02.012
  4. K. -U. Jung, T. -G. Lee and C. -S. Mun, Kor. J. Mater. Res., 18(4), 211 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.4.211
  5. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Langmuir, 14, 3160 (1998). https://doi.org/10.1021/la9713816
  6. F. Pedraza and A. Vazquez, J. Phys. Chem. Solid., 60, 445 (1999). https://doi.org/10.1016/S0022-3697(98)00315-1
  7. P. Chrysicopoulou, D. Davazoglou, C. Trapalis and G. Kordas, Thin Solid Films, 323, 188 (1998). https://doi.org/10.1016/S0040-6090(97)01018-3
  8. M. Takeuchi, T. Itoh and H. Nagasaka, Thin Solids Films, 51, 83 (1978). https://doi.org/10.1016/0040-6090(78)90215-8
  9. K. S. Yeung and Y. W. Lam, Thin Solids Films, 109, 169 (1983). https://doi.org/10.1016/0040-6090(83)90136-0
  10. J. H. Kim and S. Shiratori, Jpn. J. Appl. Phys., 44, 7588 (2005). https://doi.org/10.1143/JJAP.44.7588
  11. Y. Tsuge, J. Kim, Y. Sone, O. Kuwaki and S. Shiratori, Thin Solid Films, 516, 2463 (2008). https://doi.org/10.1016/j.tsf.2007.04.084
  12. H. -J. Kim, K. -J. Jeong and D. -S. Bae, Kor. J. Mater. Res., 22(5), 249 (2012). https://doi.org/10.3740/MRSK.2012.22.5.249
  13. G. Decher, J. D. Hong and J. Schmitt, Thin Soild Films, 210-211, 831 (1992). https://doi.org/10.1016/0040-6090(92)90417-A
  14. F. Caruso, X. Shi, R. A. Caruso and A. Susha, Adv. Mater, 13, 740 (2001). https://doi.org/10.1002/1521-4095(200105)13:10<740::AID-ADMA740>3.0.CO;2-6
  15. M. Keshmiri, M. Mohseni and T. Troczynski, Appl. Catal. B Environ., 53, 209 (2004). https://doi.org/10.1016/j.apcatb.2004.05.016