DOI QR코드

DOI QR Code

Spacecraft Guidance Algorithms for Asteroid Intercept and Rendezvous Missions

  • Received : 2012.04.28
  • Accepted : 2012.06.01
  • Published : 2012.06.30

Abstract

This paper presents a comprehensive review of spacecraft guidance algorithms for asteroid intercept and rendezvous missions. Classical proportional navigation (PN) guidance is reviewed first, followed by pulsed PN guidance, augmented PN guidance, predictive feedback guidance, Lambert guidance, and other guidance laws based on orbit perturbation theory. Optimal feedback guidance laws satisfying various terminal constraints are also discussed. Finally, the zero-effort-velocity (ZEV) error, analogous to the well-known zero-effort-miss (ZEM) distance, is introduced, leading to a generalized ZEM/ZEV guidance law. These various feedback guidance laws can be easily applied to real asteroid intercept and rendezvous missions. However, differing mission requirements and spacecraft capabilities will require continued research on terminal-phase guidance laws.

Keywords

References

  1. Zarchan, P., Tactical and Strategic Missile Guidance, 5th Ed., Progress in Astronautics and Aeronautics, AIAA, Washington, DC, 2007.
  2. Wie, B., Space Vehicle Dynamics and Control, 2nd Ed., AIAA, Reston, VA, 2008.
  3. Vallado, D., Fundamentals of Astrodynamics and Applications, 3rd Ed., Microcosm Press, Hawthorne, CA, 2007.
  4. Gil-Fernandez, J., Cadenas-Gorgojo, R., Prieto-Llanos, T., and Graziano, M., "Autonomous GNC Algorithms for Rendezvous Missions to Near-Earth-Objects", AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, HI, 2008.
  5. Gil-Fernández, J., Panzeca, R., and Corral, C., "Impacting Small Near Earth Objects", Advances in Space Research, Vol. 42, No. 8, 2008, pp. 1352-1363. DOI: 10.1016/j.asr.2008.02.023
  6. M. Hawkins, A. Pitz, B. Wie, and J. Gil-Fernández, "Terminal-Phase Guidance and Control Analysis of Asteroid Interceptors", AIAA Guidance, Control, and Navigation Conference, Toronto, Canada, August 2-5, 2010.
  7. Kim, M. and Grider, K. V., "Terminal Guidance for Impact Attitude Angle Constraint Flight Trajectories", IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-9, No. 6, 1973, pp. 269-278. DOI: DOI: 10.1109/TAES.1973.309659
  8. Kim, B. S., Lee, J. G., and Han, H. S., "Biased PNG Law for Impact with Angular Constraint", IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, No. 1, 1998, pp. 277-288. https://doi.org/10.1109/7.640285
  9. Ryoo, C. K., Cho, H. J., and Tahk, M. J., "Optimal Guidance Laws with Terminal Impact Angle Constraint", Journal of Guidance, Control, and Dynamics, Vol. 28, No. 4, 2005, pp. 724-732. DOI: 10.2514/1.8392
  10. Lu, P., Doman, D. B., and Schierman, J. D., "Adaptive Terminal Guidance for Hypervelocity Impact in Specified Direction", Journal of Guidance, Control, and Dynamics, Vol. 29, No. 2, 2006, pp. 724-732. DOI: 10.2514/1.14367
  11. Shaferman, V., and Shima, T., "Linear Quadratic Guidance Laws for Imposing a Terminal Intercept Angle", Journal of Guidance, Control, and Dynamics, Vol. 31, No. 5, 2008, pp. 1400-1412. DOI: 10.2514/1.32836
  12. Ratnoo, A., and Ghose, D., "Impact Angle Constrained Guidance Against Nonstationary Nonmaneuvering Targets", Journal of Guidance, Control, and Dynamics, Vol. 33, No. 1, 2010, pp. 269-275. DOI: 10.2514/1.45026
  13. Yoon, M. G., "Relative Circular Navigation Guidance for Three-Dimensional Impact Angle Control Problem", Journal of Aerospace Engineering, Vol. 33, No. 4, 2010, pp. 300-308. DOI: 10.1061/(ASCE)AS.1943-5525.0000043
  14. Shima, T., "Intercept-Angle Guidance", Journal of Guidance, Control, and Dynamics, Vol. 34, No. 2, 2011, pp. 484-492. DOI: 10.2514/1.51026
  15. Bryson, A. E., and Ho, Y.-C., Applied Optimal Control: Optimization, Estimation, and Control, Wiley, New York, 1975.
  16. Battin, R. H., An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, Reston, VA, 1987.
  17. D'Souza, C. N., "An Optimal Guidance Law for Planetary Landing", AIAA Guidance, Navigation, and Control Conference, New Orleans, LA, 1997.
  18. Guo, Y., Hawkins, M., and Wie, B., "Optimal Feedback Guidance Algorithms for Planetary Landing and Asteroid Intercept", AAS/AIAA Astrodynamics Specialist Conference, Girdwood, AK, 2011.
  19. Hawkins, M., Guo, Y., and Wie, B., "Guidance Algorithms for Asteroid Intercept Missions with Precision Targeting Requirements", AAS/AIAA Astrodynamics Specialist Conference, Girdwood, AK, 2011.
  20. Ebrahimi, B., Bahrami, M., and Roshanian, J., "Optimal Sliding-mode Guidance with Terminal Velocity Constraint for Fixed-interval Propulsive Maneuvers", Acta Astronautica, Vol. 62, No. 10-11, 2008, pp.556-562. DOI: 10.1016/j.actaastro.2008.02.002
  21. Furfaro, R., Selnick, S., Cupples, M. L., and Cribb, M., W., "Non-linear Sliding Guidance Algorithms for Precision Lunar Landing", AAS/AIAA Astrodynamics Specialist Conference, Girdwood, AK, 2011.
  22. Guo, Y., Hawkins, M., and Wie, B., "Waypoint-Optimized Zero-Effort-Miss / Zero-Effort-Velocity Feedback Guidance For Mars Landing", AAS/AIAA Space Flight Mechanics Meeting, Charleston, SC, 2012. Submitted to Journal of Guidance, Control and Dynamics.
  23. Guo, Y., Hawkins, M., and Wie, B., "Applications of Generalized Zero-Effort-Miss/Zero-Effort-Velocity Feedback Guidance Algorithm", AAS/AIAA Space Flight Mechanics Meeting, Charleston, SC, 2012. Journal of Guidance, Control and Dynamics.
  24. Acikmese, B., and Ploen, S. R., "Convex Programming Approach to Powered Descent Guidance for Mars Landing", Journal of Guidance, Control, and Dynamics, Vol. 30, No. 5, 2007, pp. 1353-1366. DOI: 10.2514/1.27553

Cited by

  1. A Novel Concept for Guidance and Control of Spacecraft Orbital Maneuvers vol.2016, 2016, https://doi.org/10.1155/2016/7695257
  2. Solution for Nonlinear Three-Dimensional Intercept Problem with Minimum Energy vol.2013, 2013, https://doi.org/10.1155/2013/435725
  3. Planetary defense mission concepts for disrupting/pulverizing hazardous asteroids with short warning time vol.1, pp.1, 2017, https://doi.org/10.1007/s42064-017-0002-9
  4. Generalized Guidance Scheme for Low-Thrust Orbit Transfer vol.2014, 2014, https://doi.org/10.1155/2014/407087
  5. Synthesis and analysis of robust control compensators for Space descent & landing vol.28, pp.13, 2018, https://doi.org/10.1002/rnc.4109