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Abstract – Fingerprinting is a widely used positioning technology for received signal strength (RSS) 

based wireless local area network (WLAN) positioning system. Though spatial RSS variation is the 

key factor of the positioning technology, temporal RSS variation needs to be considered for more 

accuracy. To deal with the spatial and temporal RSS characteristics within a unified framework, this 

paper proposes an extended signal propagation mode (ESPM) and a fingerprint generation method. 

The proposed spatiotemporal fingerprint generation method consists of two algorithms running in 

parallel; Kalman filtering at several measurement-sampling locations and Kriging to generate location 

fingerprints at dense reference locations. The two different algorithms are connected by the extended 

signal propagation model which describes the spatial and temporal measurement characteristics in one 

frame. An experiment demonstrates that the proposed method provides an improved positioning 

accuracy.    
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1. Introduction 
 

As positioning technology is the key of location based 

services, many methods have been investigated. The 

received signal strength (RSS) based Wireless Local Area 

Network (WLAN) positioning has attracted much attention 

recently due to the increased deployment of WLAN access 

points (APs).  

In the RSS based WLAN positioning methods, signal 

propagation models (SPMs) describing the relationship 

between the RSS value and the geometric distance of 

signal path have been extensively utilized [1-4]. According 

to them, it is generally known that RSS value decreases as 

distance increases.  

It should be noted that the real RSS measurements also 

show time-varying characteristics. This can be easily 

verified if we sample and plot RSS values from a mobile 

device (MD) whose location is fixed. The conventional 

SPM cannot reflect this characteristic since it describes the 

signal propagation considering only the spatial geometries 

between the MD and the APs.  

Thus, to improve the positioning accuracy, it is nece- 

ssary to consider the temporal variation of RSS in addition 

to the geometry dependence between the MD and the APs. 

The RSS based positioning technologies can be 

classified into two categories. One is location 

fingerprinting and the other is trilateration or triangulation. 

The former is accepted as a better method since it provides 

reliable location estimates in complex indoor environments. 

Mircrosoft's RADAR [5, 6] is the first WLAN 

positioning system that applied fingerprinting. It was found 

that the fingerprint method is very time consuming and 

requires much labor effort. To save the labor effort and 

time, [7, 8], and [9], utilized the radial basis function, the 

Kriging algorithm and the expectation maximization 

algorithm, respectively. [10] proposed a method to improve 

accuracy by considering the precise small-scale compen- 

sation terms. [11] proposed a method to utilize extra 

sniffers installed at known locations for the continuous 

sampling of reference measurements. The sampled 

measurements are interpolated by applying the bi-variate 

interpolation algorithm [12] to generate the reference 

measurements on regular grid points. In [13], the inter-AP 

measurements are used to generate the distance mapping 

curves. Kaemarungsi [14] reported the experimental 

analysis results on RSS temporal characteristics. [15] 

proposed a scheme to collect reference measurements from 

client sniffers periodically. [16] collected reference 

measurements between APs. For spatial processing, a 

truncated singular decomposition technique was utilized to 

create a mapping between RSS measurements and 

distances. [17] introduced a comprehensive kernelized 

weight functions to estimate the location of an MD through 

the combination of the neighboring AP locations.  

Based on the literature survey, it can be seen that most of 

previous research works focus on spatial signal 
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characteristics. Detailed treatment of signal propagation in 

both spatial and temporal domains is hard to find. To deal 

with the spatial and temporal characteristics of the RSS 

within one framework, this paper proposes an efficient 

location fingerprint generation method based on an 

extended signal propagation model (ESPM).  

The proposed method consists of two algorithms running 

in parallel; Kalman filtering at several RSS-sampling 

locations to compute temporal estimates and Kriging 

algorithm at arbitrarily many reference locations to 

generate the location fingerprints. 

This paper is organized as follows. In Section 2, the 

spatiotemporal modeling is explained in the order of ESPM, 

temporal variation, and spatial variation. In Section 3, the 

Kalman filtering and Kriging algorithms are explained for 

location fingerprint generation. In Section 4, an experiment 

is introduced and the results are analyzed to demonstrate 

the accuracy improvement by applying the proposed 

method. Finally, concluding remarks are given. 

 

 

 

2. Spatiotemporal Signal Modeling 

 

2.1 Extended signal propagation model 

 

To derive an efficient fingerprint generation method, a 

realistic signal propagation model plays a crucial role. For 

this purpose, an ESPM is proposed as follows. 

 

 ( , ) ( ) ( ) ( ) ( , )p s t p s n s m t v s t= + + +%  

 0 10
0

( )
( ) 10 log

d s
p s p

d
α

 
= −  

 
 (1) 

 

where  
( , )p s t%  : measured RSS (dBm) 

s  : sampling location (vector) 
t  : sampling time 

( )p s  : ideal RSS (dBm) 
( )d s  : distance from AP to MD (m) 

0 0( , )p d  : reference RSS 0p  sampled at distance  

0d   : from an AP (dBm, m) 
( )n s  : path loss induced by NLOS errors and wall-

penetration factors 
( )m t   : temporal RSS variation 

α   : signal attenuation factor 
( , )v s t  : white Gaussian measurement noise  

 

In Eq. (1), 0p , 0d , and α  with respect to an AP can 

be determined by sampling RSS measurements at various 

MD locations where the line-of-sight signal path between 

the MD and the AP is guaranteed. The spatially-correlated 

path loss ( )n s  includes the NLOS errors [18] and wall-

penetration factors caused by complex indoor geometric 

environments. The temporal RSS variation ( )m t  includes 

channel congestion and contention related with an AP. The 

measurement noise ( , )v s t  is assumed to be wide-sense 

stationary (WSS) white Gaussian in both space and time 

domains.  

The ESPM shown in Eq. (1) considers both spatial and 

temporal errors at the same time. If the time index t  and 

the signal variation ( )m t  in Eq. (1) are eliminated, it is 

reduced to the conventional SPM [15-18].  

 

2.2 State space model of temporal variation 

 

The temporal variation ( )m t  of the proposed ESPM 

can be modeled, in its simplest but effective form, as the 

WSS first-order Markov process satisfying the following 

equation. 

 

 ( ) exp ( ) ( )

t t

t t

t
m t t m t w dτ τ

τ

+∆
 ∆ 

+ ∆ = − + 
 

∫  (2) 

 

where tτ  is the correlation time and ( )w t  is the white 

Gaussian noise in temporal domain. The autocorrelation of 
( )w t can be expressed as 

 

 [ ]( ) ( ) ( )wE w t w t qτ δ τ+ =  (3) 

 

The notation [ ]E ⋅  shown in Eq. (3) denotes the 

statistical expectation. Due to the whiteness of the noise 
( )w t , the autocorrelation of ( )m t  is  

 

 [ ]( ) ( ) exp  m
t

E m t m t c
τ

τ
τ

 
+ = − 

 
  (4) 

 

From Eqs. (2)-(4), the analytic variogram ( )γ τ of RSS 

measurements can be modeled by 
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  (5) 

 

As shown in Eq. (5), the variogram depends on mc , vc , 

and tτ . To extract these parameters, an experimental 

variogram [19] can be pre-computed based on the real 

measurement as. 
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where M  denotes the number of measurement pairs 

utilized in deriving the experimental variogram. By 

comparing the analytic variogram and the experimental 
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variogram, the unknown parameters mc , vc , and tτ  can 

be obtained. 

 

2.3 State space model of spatial variation 

 

A state space model to describe RSS variations in spatial 

domain is required to derive an efficient spatial 

interpolation algorithm. For the purpose, the RSS 

measurement ( , )p s t%  shown in Eq. (1) is decomposed into 

the mean ( )tµ , the spatial variation ( )sδµ , and the 

white-Gaussian measurement noise ( , )v s t  
 

 ( , ) ( ) ( ) ( , )p s t t s v s tµ δµ= + +%  (7) 

 
where ( )tµ  is the unknown spatial mean at t  over the 

entire deployment area A  of the location system. The 

spatial mean ( )tµ  and the WSS spatial variation ( )sδµ  

are modeled to satisfy the following equations. 
 

 
1

( ) ( ) ( , )
A

t m t p s t ds
A

µ = + ∫ %  (8) 

 ( ) exp ( ) ( )

s s

s s

s
s s s l dlδµ δµ η

τ

+∆
 ∆ 

+ ∆ = − + 
 

∫  (9) 

 
where sτ  is the correlation distance and ( )sη  is the 

white Gaussian noise in spatial domain. The 

autocorrelation of ( )sη  is 

 

 [ ]( ) ( ) ( )E s s l q lηη η δ+ =  (10) 

 

Hence the autocorrelation of ( )sδµ can be represented 

as 

 

 [ ]( ) ( ) exp  
s

l
E s s l cµδµ δµ

τ

 
+ = − 

 
  (11) 

 

It is modeled that the spatial white noise ( )sη  is 

independent of the temporal white noise ( )w t  for any s  

and t . As a result, ( )sδµ  is independent of ( )m t  (refer 

to Eqs. (2) and (9)). 

 

 [ ]( ) ( ) 0E s m tδµ =   (12) 

 

Hence the spatial and temporal variations can be treated 

independently.  

The analytic variogram ( )lγ  of RSS measurement in 

spatial domain can be modeled as  
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 (13) 

The analytic variogram depends on cµ , vc , and τs . 

Similarly to Eq. (6), the following experimental variogram 

can be pre-computed  
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( ) ( , ) ( , )

2
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N

γ
=

= + −∑% % %  (14) 

 

where N  denotes the number of measurement pairs 

utilized in deriving the experimental variogram. By 

comparing the analytic variogram and the experimental 

variogram, the unknown parameters cµ , vc , and τs  can 

be obtained. 

 

 

 

3. Spatiotemporal Fingerprint Generation 

 

3.1 Overall algorithm structure 

 

In the proposed location fingerprint generation method, 

two types of locations need to be discriminated; sampling 

locations (SLs) and reference locations (RLs). An SL 

corresponds to the location where RSS measurements are 

actually sampled. An RL corresponds to the location where 

a location fingerprint is generated.  

The overview of the proposed method for spatiotemporal 

fingerprint generation is shown in Fig. 1. RSS 

measurements are sampled at several SLs and the Kalman 

filters are applied to these measurements for each SL. Then 

the Kriging estimator combines the outputs of Kalman 

filters to generate the reference fingerprints associated with 

dense RLs which are regular grid points.  

 

 

Fig. 1. Overview of the processing structure to generate 

spatiotemporal location fingerprints 

 

Recursive Kalman filtering is advantageous in reducing 

the computational burden to process sampled measure- 

ments. Kriging is beneficial in generating location 

fingerprints at arbitrary many RLs based on few sampled 

measurements. The two attractive estimators are connected 

by the ESPM which is discussed in detail in this section.  
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3.2 Temporal filtering 

 

From now on, a Kalman filter algorithm based on the 

ESPM is formulated for temporal filtering. The states of 

Kalman filter are selected as  

 

 
( ) ( )

( , )
( )

k k

k i

i

p s n s
X s t

m t

+ 
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 

  (15) 

 

where ks  denotes an SL which is fixed and known and it  

is a discrete sampling time instant. Hence the system 

model for time propagations and measurement updates can 

be obtained as follows based on Eqs. (1)-(15). 

 

 1( , ) ( , ) ( )k i k i iX s t FX s t G tω+ = +   (16) 

 ( , ) ( , ) ( , )= +%
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where 
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The notation ~ ( , )XX N X C  denotes that the random 

vector X  satisfies the Gaussian distribution with the 

mean vector X  and the covariance matrix XC .  

Based on the modeling by Eqs. (16)-(18), the 

initialization, the time propagation, and the measurement 

update stages of each Kalman filter are formulated as 

follows  

 

Initialization: 
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Time Propagation: 
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Measurement Update : 
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The output of the Kalman filter satisfies the following 

equation. 

 

 

ˆ ˆ( , ) ( , ) ( , )

ˆ                ( ) ( ) ( ) ( , )
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k k i k i

HX s t H X s t X s t
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where 

 

 ˆ ˆ( , ) ( , ) ( , )k i k i k iX s t X s t X s tδ ∆ −  : estimation error 

 ( )ˆ ( , ) ~ , ( , )k i k iX s t O C s tδ  (23) 

 

It should be noted that ˆ ( , )k iH X s tδ  in Eq. (22) plays 

the similar role as that of ( , )v s t  in Eq. (1) of a single RSS 

measurement. However, the variance of ˆ ( , )k iH X s tδ  is 

smaller than that of the single measurement noise ( , )v s t  

after several measurement updates of the Kalman filter 

since the pair ( ,F H ) is completely observable. 

 

 ( , ) <T

k i vHC s t H c  (24) 

 

3.3 Spatial filtering 

 

While the Kalman filters are running at several SLs, the 

spatiotemporal location can be generated by applying the 

Kriging algorithm to the Kalman filter outputs at each time 

step. In the proposed method, the location fingerprints can 

be generated for arbitrarily many RLs utilizing the 

reference RSS measurements sampled at few SLs. To apply 

the Kriging algorithm, the output of each Kalman filter is 

interpreted differently as follows. 

 

 

ˆ ˆ( , ) ( ) ( ) ( ) ( , )

ˆ                           ( ) ( ) ( , )

k i k k i k i

i k k i

HX s t p s n s m t H X s t

t s H X s t

δ

µ δµ δ

= + + +

= + +
  (25) 

 

In general, the estimation error ˆ ( , )k iX s tδ  of the 

Kalman filter is the combination of the initial estimation 

error 
0

ˆ ( , )kX s tδ , the propagation noises { ( )}jtω , and the 

measurement noises { ( , )}k jv s t up to the current instant. 

Since 
0

ˆ ( , ),kX s tδ { ( )},jtω  and { ( , )}k jv s t  are 

independent of the spatial variation ( )ksδµ , it holds that 
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 ˆ( ) ( , ) 0k k iE s X s tδµ δ  =   (26) 

 

for any it . 

Once the reference RSS values are prepared at the 

several SLs by the Kalman filters, the location fingerprints 

at any RL can be generated. For the purpose, the proposed 

method utilizes Kriging algorithm since it is based on the 

well-developed statistical theory for spatial analysis [19], 

robust to modeling errors [20], and closely connected with 

Kalman filtering. 

Before applying Kriging algorithm at the i -th time step, 

a measurement vector is obtained by accumulating K scalar 

measurements as follows. 

 

 ( ) ( ) ( )µ ε= +i i iZ t L t t  (27) 

 

where 
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K  : number of SLs (28) 

 

Based on Eq. (27) the best linear unbiased estimate 

0
ˆ ( , )j iZ s t  of the location fingerprint at an arbitrary RL 

0 0 0[ ]Ts x y=  can be obtained by applying the following 

Kriging algorithm [19, 20]. 
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In Eq. (30), klγ  denotes the variogram between the 

SLs where measurements are actually sampled and 0kγ  

denotes the variogram between an RL and an SL. It should 

be noted again that RLs do not require actual measurement 

sampling. 

As shown above, three parameters µc , τs , and 
( , )k iC s t  affect the evaluation of the variograms. The two 

parameters µc and τs  can be obtained by comparing the 

empirical and analytic variograms (refer to Eqs. (13) and 

(14)). The covariance ( , )k iC s t  can be calculated from the 

Kalman filter corresponding to the k -th SL and the i -th 

sampling time. 

 

 

4. Experiment 

 

4.1 Temporal variations of received signal strength 

 

To characterize temporal variations of WLAN RSS 

measurements, an experiment was performed. For the 

purpose, RSS measurements were collected with respect to 

a public AP which belongs to a network which provides 

wireless connections to the students in a university 

building. The RSS measurements were collected during six 

successive days by utilizing a laptop computer at fixed 

location. According to the conventional SPM, the RSS 

measurements sampled at a fixed location are expected to 

be constant since the geometry between the MD and the AP 

does not change. In Fig. 2, the raw and smoothed RSS 

trends are depicted as thin and thick lines, respectively. The 

smoothed RSS trend was obtained by averaging successive 

fifty RSS measurements. Each thin vertical line appearing 

at regular interval corresponds to the noon of each day. 
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Fig. 2. Trends of received signal strength measurements; 

raw (thin gray line) and smoothed (thick black line) 

 

In Fig. 2, an interesting characteristic can be found in the 

smoothed RSS trend. The RSS level becomes low during 
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working hours in weekdays such as Friday, Monday, 

Tuesday, and Wednesday. During night hours, the RSS 

level is mostly high. On the other hand, the RSS magnitude 

does not drop down largely on Saturday and Sunday. Thus, 

the long-term RSS trend bears a significant component of 

one day period obeying two types of patterns; weekday and 

weekend. Since large decrease in RSS level occurs only 

during working hours on weekdays, it seems that the RSS 

temporal variation is closely related to the number of 

people within the AP’s signal range.  

The large RSS variation that appears during weekdays 

can be attributed to two factors; the movements of people 

within the signal path from the AP to the laptop computer 

and the channel conditions occurred by many WLAN users 

in the form of congestion, contention, and interference. 

Among the two main factors, the effects of the movements 

of people cannot persist more than several minutes if we 

consider walking speed of people and the AP’s signal range. 

Thus, it is strongly estimated that the large variations that 

appears during weekdays are caused by the channel 

conditions due to the increase number of WLAN users. 

 

4.2 Performance of spatiotemporal fingerprint 

 

To evaluate the performance of the proposed method, an 

experiment was performed. The layout of the test bed is 

indicated in Fig. 3 which corresponds to a floor in a 

university building that consists of offices, lecture rooms, 

and laboratories. It should be noted that most of people 

move along the corridors within 10 minute period during 

each hour since the test bed corresponds to a university 

building. 

 

 

Fig. 3. Experimental test bed. 

 

A laptop computer was utilized to collect the RSS 

measurements at various RLs. There are in total 6 APs, 8 

SLs and 140 RLs. The spacing between two adjacent SLs 

is about 9 to 20 meters. Obviously, the number of SL is 

much smaller than that of RLs. Measurements were 

collected in six periods during two successive weekdays 

which are summarized in Table 1. An illustrative 

distribution of average RSS values is depicted in Fig. 4.  

To obtain the key parameters such as , , ,v sc cµ τ  

, ,m vc c and ,tτ  experimental variograms were extracted 

by applying the collected measurements to Eqs. (6) and 

(14). The key parameters were selected as follows so that 

the analytic variogram based on Eqs. (5) and (13) are 

consistent with the experimental variograms.  

 

 
2 2100 (dBm ), 5 (dBm ), 10 (m)v sc cµ τ= = =  (31) 

 2 21.8 (dBm ), 5 (dBm ), 3600 (sec)m v tc c τ= = =  (32) 

 

The key parameters were utilized to generate seven sets 

of location fingerprints: six sets of spatial fingerprints 

which correspond to six testing periods (i.e. the data 

collected in each period were used to generate a set of 

spatial fingerprints) by applying the spatial Kriging 

algorithm based on the conventional SPM without 

considering the temporal characteristics. In addition, one 

set of spatiotemporal fingerprint was generated by applying 

the proposed method.  

To test the different sets of fingerprints, a set of testing 

data were collected during PERIOD 6 at various test 

locations. For each test location, RSS measurements were 

sampled for 5 seconds to obtain an average value. The true 

values of the test locations’ position were obtained by 

utilizing grid lines marked on the floor. 

It should be noted that there is no common location 

between the SLs and the test locations. However, the RLs 

are the same as the test locations in this experiment.  

To obtain MD position estimates, the simplest nearest 

neighbor algorithm was utilized to test the effectiveness of 

the proposed method. The average RSSs collected at each 

test locations were compared with the fingerprint vectors in 

the database. The RL corresponding to the best matched 

fingerprint vector was determined as the location of the 

user. 

The positioning accuracy when different fingerprint 

database were used is shown in Fig. 5. As the testing data 

were collected at PERIOD 6, there are time differences 

between this period and the periods when differences 

between this period and the periods when reference data 

Table 1. Six different periods to collect signal strength 

measurements for location fingerprints generation 

 
    

 

Fig. 4. An example distribution of average signal strength 

measurements over the experiment area 
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were collected at SLs (i.e. PERIOD1 to PERIOD6).  

In Fig. 5, it can be seen that the time difference is an 

important factor. The positioning accuracy deteriorates 

significantly when the time difference is 12 and 16 hours. 
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Fig. 5. Comparison of cumulative probabilities of error 

distances by applying spatial location fingerprints 

and spatiotemporal location fingerprint 

 

However, the accuracy is much better when the time 

difference is 0, 4, 8, and 20 hours. This result is consistent 

with the previous experiment result showing that the long-

term RSS variation bears a significant component 

corresponding to the period of 24 hours. Thus, signal 

difference becomes largest if time difference is near 12 

hours. 

Fig. 4 also reveals that when the spatiotemporal 

fingerprint is utilized, the best accuracy can be achieved. 

Since the test data were collected at PERIOD 6, it is fair to 

compare the positioning result using the fingerprint 

database generated by applying the spatial Kriging 

algorithm to the data collected in PERIOD 6 with that of 

the proposed method. The circular error probable (CEP) 

values are about 2.5 m and 1.9 m respectively which means 

the improvement of accuracy is about 24% due to the 

utilization of more measurements in a correct way. 

 

 

5. Conclusion 

 

This paper proposes an extended signal propagation 

model and a spatiotemporal location fingerprint generation 

method to improve the positioning accuracy using 

fingerprinting technology based on received signal strength 

measurements. First, the extended signal propagation 

model which can cope with both the spatial and temporal 

variations of signal strength measurements in one 

framework is proposed. Then an efficient spatiotemporal 

location fingerprint generation method based on Kalman 

filtering and Kriging algorithm is formulated. To verify the 

efficiency of the proposed method, an experiment was 

carried out. The results show that the positioning accuracy 

can be improved by at least 24% if temporal variations are 

considered in addition to the spatial dependence of the 

receive signal strength measurements. 
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