DOI QR코드

DOI QR Code

Synthesis of Cysteine Capped Silver Nanoparticles by Electrochemically Active Biofilm and their Antibacterial Activities

  • 투고 : 2012.04.02
  • 심사 : 2012.05.09
  • 발행 : 2012.08.20

초록

Cysteine capped silver nanoparticles (Cys-AgNPs) have been synthesized by employing electrochemically active biofilm (EAB), $AgNO_3$ as precursor and sodium acetate as electron donor in aqueous solution at $30^{\circ}C$. Cys-AgNPs of 5-10 nm were synthesized and characterized by UV-Vis, FT-IR, XRD and TEM. Capping of the silver nanoparticles with cysteine provides stability to nanoparticles by a thiolate bond between the amino acid and the nanoparticle surface and hydrogen bonding among the Cys-AgNPs. In addition, the antibacterial effects of as-synthesized Cys-AgNPs have been tested against two pathogenic bacteria Escherichia coli (O157:H7) and Pseudomonas aeruginosa (PAO1). The results demonstrate that the as-synthesized Cys-AgNPs can proficiently inhibit the growth and multiplication of E. coli and P. aeruginosa.

키워드

참고문헌

  1. Jones, C. M.; Hoek, E. M. V. J. Nanopart. Res. 2010, 12, 1531. https://doi.org/10.1007/s11051-010-9900-y
  2. Rai, M.; Yadav, A.; Gade, A. Biotechnology Advances 2009, 27, 76. https://doi.org/10.1016/j.biotechadv.2008.09.002
  3. Sharma, V. K.; Yngard, R. A.; Lin, Y. Adv. Colloid Interface Sci. 2009, 145, 83. https://doi.org/10.1016/j.cis.2008.09.002
  4. Panacek, A.; Kolar, M.; Vecerova, R.; Prucek, R.; Soukupova, J.; Krystof, V.; Hamal, P.; Zboril, R.; Kv tek, L. Biomaterials 2009, 30, 6333. https://doi.org/10.1016/j.biomaterials.2009.07.065
  5. Dhar, S.; Murawala, P.; Shiras, A.; Pokharkar, V.; Prasad, B. L. V. Nanoscale 2012, 4, 563. https://doi.org/10.1039/c1nr10957j
  6. Chen, X.; Schluesener, H. J. Toxicol. Lett. 2008, 176, 1. https://doi.org/10.1016/j.toxlet.2007.10.004
  7. Dorjnamjin, D.; Ariunaa, M.; Shim, Y. K. Int. J. Mol. Sci. 2008, 9, 807. https://doi.org/10.3390/ijms9050807
  8. Singh, S.; Patel, P.; Jaiswal, S.; Prabhune, A. A.; Ramana, C. V.; Prasad, B. L. V. New J. Chem. 2009, 33, 646.
  9. Mandal, D.; Bolander, M. E.; Mukhopadhyay, D.; Sarkar, G.; Mukherjee, P. Appl. Microbiol. Biotechnol. 2006, 69, 485. https://doi.org/10.1007/s00253-005-0179-3
  10. Vijayakumar, P. S.; Prasad, B. L. V. Langmuir 2009, 25, 11741. https://doi.org/10.1021/la901024p
  11. Fayaz, A. M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P. T.; Venketesan, R. Nanomedicine: Nanotechnology, Biology, and Medicine 2010, 6, 103. https://doi.org/10.1016/j.nano.2009.04.006
  12. Singh, M.; Sinha, I.; Mandal, R. K. Materials Letters 2009, 63, 425. https://doi.org/10.1016/j.matlet.2008.10.067
  13. Xie, J.; Lee, J. Y.; Wang, D. I. C.; Ting, Y. P. ACS Nano 2007, 1, 429. https://doi.org/10.1021/nn7000883
  14. Amato, E.; Fernandez, Y. A. D.; Taglietti, A.; Pallavicini, P.; Pasotti, L.; Cucca, L.; Milanese, C.; Grisoli, P.; Dacarro, C.; Hechavarria, J. M. F.; Necchi, V. Langmuir 2011, 27, 9165. https://doi.org/10.1021/la201200r
  15. Li, H.; Bian, Y. Nanotechnology 2009, 20, 145502. https://doi.org/10.1088/0957-4484/20/14/145502
  16. Kalathil, S.; Lee, J.; Cho, M. H. Green Chem. 2011, 13, 1482. https://doi.org/10.1039/c1gc15309a
  17. Varghese, M. V.; Dhumal, R. S.; Patil, S. S.; Paradkar, A. R.; Khanna, P. K. Synth. & React. in Inorg., Met.-Org. and Nano-Met. Chem. 2009, 39, 554.
  18. Mandal, S.; Gole, A.; Lala, N.; Gonnade, R.; Ganvir, V.; Sastry, M. Langmuir 2001, 17, 6262. https://doi.org/10.1021/la010536d
  19. Port, S.; Delia, M. L.; Bergel, A. Electrochimica Acta 2008, 53, 2737. https://doi.org/10.1016/j.electacta.2007.10.059
  20. Li, Z.; Lee, J.; Cho, M. H. Biotechnol. Bioprocess Eng. 2010, 15, 139. https://doi.org/10.1007/s12257-009-0142-8
  21. Khan, Z.; Talib, A. Colloids and Surfaces B: Biointerfaces 2010, 76, 164. https://doi.org/10.1016/j.colsurfb.2009.10.029
  22. Boyce, T. G.; Swerdlow, D. L.; Griffin, P. M. N. Engl. J. Med. 1995, 333, 364. https://doi.org/10.1056/NEJM199508103330608
  23. Stover, C. K.; Pham, X. Q.; Erwin, A. L.; Mizoguchi, S. D.; Warrener, P.; Hickey, M. J.; Brinkman, F. S. L.; Hufnagle, W. O.; Kowalik, D. J.; Lagrou, M.; Garber, R. L.; Goltry, L.; Tolentino, E.; Westbrook-Wadman, S.; Yuan, Y.; Brody, L. L.; Coulter, S. N.; Folger, K. R.; Kas, A.; Larbig, K. Nature 2000, 406, 959. https://doi.org/10.1038/35023079
  24. Mie, G. Ann. Phys. 1908, 25, 377.
  25. Templeton, A. C.; Chen, S.; Gross, S. M.; Murray, R. W. Langmuir 1999, 15, 66. https://doi.org/10.1021/la9808420
  26. Birks, L. S.; Friedman, H. J. Appl. Phys. 1946, 17, 687. https://doi.org/10.1063/1.1707771
  27. Choia, S. H.; Leeb, S. H.; Hwanga, Y. M.; Leea, K. P.; Kang, H. D. Radiation Physics and Chemistry 2003, 67, 517. https://doi.org/10.1016/S0969-806X(03)00097-5
  28. Rai, M.; Yadav, A.; Gade, A. Biotechnol. Adv. 2009, 27, 76. https://doi.org/10.1016/j.biotechadv.2008.09.002
  29. Sondi, I.; Sondi, B. S. J. Colloid and Inter. Sci. 2004, 275, 177. https://doi.org/10.1016/j.jcis.2004.02.012
  30. Dallas, P.; Sharma, V. K.; Zboril, R. Adv. Colloid Interface Sci. 2011, 166, 119.

피인용 문헌

  1. Biogenic Synthesis, Photocatalytic, and Photoelectrochemical Performance of Ag–ZnO Nanocomposite vol.117, pp.51, 2013, https://doi.org/10.1021/jp410063p
  2. Impacts of Select Organic Ligands on the Colloidal Stability, Dissolution Dynamics, and Toxicity of Silver Nanoparticles vol.47, pp.22, 2013, https://doi.org/10.1021/es403462j
  3. Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach vol.5, pp.10, 2013, https://doi.org/10.1039/c3nr00613a
  4. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm vol.5, pp.19, 2013, https://doi.org/10.1039/c3nr02678g
  5. Synthesis and characterization of cysteine functionalized silver nanoparticles for biomolecule immobilization vol.37, pp.11, 2014, https://doi.org/10.1007/s00449-014-1191-8
  6. nanostructures engineered by electrochemically active biofilm vol.38, pp.6, 2014, https://doi.org/10.1039/C3NJ01488F
  7. Biogenic synthesis of a Ag–graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance vol.39, pp.10, 2015, https://doi.org/10.1039/C5NJ01320H
  8. Surface plasmon coupled emission as a novel analytical platform for the sensitive detection of cysteine vol.4, pp.5, 2015, https://doi.org/10.1515/ntrev-2015-0003
  9. Synthesis of TiNi by a green method vol.6, pp.4, 2017, https://doi.org/10.1680/jbibn.16.00035
  10. Synthesis of l-Cysteine Capped Silver Nanoparticles in Acidic Media at Room Temperature and Detailed Characterization pp.1574-1451, 2018, https://doi.org/10.1007/s10904-017-0748-9
  11. Fungi-assisted silver nanoparticle synthesis and their applications pp.1615-7605, 2017, https://doi.org/10.1007/s00449-017-1846-3
  12. Thiazole derivatives-functionalized polyvinyl chloride nanocomposites with photostability and antimicrobial properties pp.10835601, 2019, https://doi.org/10.1002/vnl.21670
  13. Positively Charged Gold Nanoparticles for Hydrogen Peroxide Detection vol.8, pp.2, 2018, https://doi.org/10.1007/s12668-018-0503-x
  14. Recent progress of metal–graphene nanostructures in photocatalysis vol.10, pp.20, 2018, https://doi.org/10.1039/C8NR03500H
  15. Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications vol.4, pp.32, 2014, https://doi.org/10.1039/c4ra00861h
  16. Low-temperature photoluminescence behaviour of Ag decorated ZnO Nanorods vol.120, pp.20, 2012, https://doi.org/10.1063/1.4968584
  17. Synthesis, MR Relaxivities, and In Vitro Cytotoxicity of 3,5-Diiodo-L-tyrosine-Coated Gd2O3 Nanoparticles vol.9, pp.1, 2012, https://doi.org/10.1007/s12668-018-0582-8
  18. Biofilm-Assisted Fabrication of Ag@SnO2-g-C3N4 Nanostructures for Visible Light-Induced Photocatalysis and Photoelectrochemical Performance vol.123, pp.34, 2012, https://doi.org/10.1021/acs.jpcc.9b05105
  19. Antifungal and Antibacterial Assay by Silver Nanoparticles Synthesized from Aqueous Leaf Extract of Trigonella foenum-graecum vol.9, pp.3, 2012, https://doi.org/10.1007/s12668-019-00643-x
  20. Shape and Size Diversity of Gold, Silver, Selenium, and Silica Nanoparticles Prepared by Green Synthesis Using Fungi and Bacteria vol.58, pp.37, 2012, https://doi.org/10.1021/acs.iecr.9b03345
  21. What will happen when microorganisms “meet” photocatalysts and photocatalysis? vol.7, pp.3, 2012, https://doi.org/10.1039/c9en01318k
  22. Antibacterial and Antifungal Studies of Biosynthesized Silver Nanoparticles against Plant Parasitic Nematode Meloidogyne incognita, Plant Pathogens Ralstonia solanacearum and Fusarium oxysporum vol.26, pp.9, 2012, https://doi.org/10.3390/molecules26092462
  23. Measurement of mercury with highly selective fluorescent chemoprobe by carbon dots and silver nanoparticles vol.274, pp.None, 2012, https://doi.org/10.1016/j.chemosphere.2021.129959
  24. Polyvinylidene fluoride (PVDF)/Ag@TiO2 nanocomposite membrane with enhanced fouling resistance and antibacterial performance vol.268, pp.None, 2012, https://doi.org/10.1016/j.matchemphys.2021.124723