DOI QR코드

DOI QR Code

반도체 광 증폭기를 이용한 전광 데이터 추출

All-optical Data Extraction Based on Optical Logic Gates

  • 이지석 (한국과학기술연구원 센서시스템연구센터) ;
  • 정미 (한국과학기술연구원 센서시스템연구센터) ;
  • 이혁재 (한국과학기술연구원 센서시스템연구센터) ;
  • 이택진 (한국과학기술연구원 센서시스템연구센터) ;
  • 전영민 (한국과학기술연구원 센서시스템연구센터) ;
  • 이석 (한국과학기술연구원 센서시스템연구센터) ;
  • 우덕하 (한국과학기술연구원 센서시스템연구센터) ;
  • 이주한 (서울시립대학교 전자전기컴퓨터공학과) ;
  • 김재헌 (한국과학기술연구원 센서시스템연구센터)
  • Lee, Ji Sok (Sensor System Research Center, Korea Institute of Science and Technology) ;
  • Jung, Mi (Sensor System Research Center, Korea Institute of Science and Technology) ;
  • Lee, Hyuk Jae (Sensor System Research Center, Korea Institute of Science and Technology) ;
  • Lee, Taek Jin (Sensor System Research Center, Korea Institute of Science and Technology) ;
  • Jhon, Young Min (Sensor System Research Center, Korea Institute of Science and Technology) ;
  • Lee, Seok (Sensor System Research Center, Korea Institute of Science and Technology) ;
  • Woo, Deok Ha (Sensor System Research Center, Korea Institute of Science and Technology) ;
  • Lee, Ju Han (School of Electrical and Computer Engineering, University of Seoul) ;
  • Kim, Jae Hun (Sensor System Research Center, Korea Institute of Science and Technology)
  • 투고 : 2012.07.02
  • 심사 : 2012.07.13
  • 발행 : 2012.08.25

초록

본 논문에서는 반도체 광 증폭기(Semiconductor Optical Amplifier)의 교차 진폭 변조 현상을 이용하여 광 컴퓨팅이나 광통신에서 데이터의 패킷 교환, 데이터 리셋 혹은 추가나 제거에 필수적인 전광 데이터 추출을 시뮬레이션하고 실험적으로 구현하였다. 전광 데이터 추출의 실험적 시뮬레이션에는 상용 프로그램인 VPI Tool을 사용하였으며 기본적으로 두 개의 반도체 광 증폭기(SOA)를 사용하여 AND 논리를 구성한 후 이를 이용하여 데이터를 추출하였다. 또한 높은 집적성과 효율로 고속으로 연산할 수 있는 가능성을 확인하였다.

All-optical data extraction, one of the key technologies for all-optical computing and optical communication to perform add-drop, packet switching, and data reset, etc., is experimentally demonstrated by using cross-gain modulation (XGM) of semiconductor optical amplifiers (SOAs). Also, all-optical data extraction based on numerical simulation is performed by using the VPI simulation tool. In this paper, the suggested optical system based on SOAs shows the potential for high speed, and highly integrable and low power optical data computing.

키워드

참고문헌

  1. M. J. Adams, D. A. O. Davies, M. C. Tatham, and M. A. Fisher, "Nonlinearities in semiconductor laser ampifiers," Opt. Quantum Electron. 27, 1-13 (1995). https://doi.org/10.1007/BF00431029
  2. A. D. Ellis, D. M. Patrick, D. Flannery, R. J. Manning, D. A. O. Davies, and D. M. spirit, "Ultra-high-speed OTDM networks using semiconductor amplifier-based processing nodes," J. Lightwave Technol. 13, 761-770 (1995). https://doi.org/10.1109/50.387793
  3. D. Nesset, T. Kelly, and D. Marcenac, "All-optical wavelength conversion using SOA nonlinearities," IEEE. Comm. Magazine. 36, 56-61 (1998)
  4. S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, and S. H. Kim, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005). https://doi.org/10.1049/el:20052320
  5. A. Sharaiha, J. Topomondzoa, and P. Morela, "All-optical logic AND-NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier," Opt. Commun. 265, 322-325 (2006). https://doi.org/10.1016/j.optcom.2006.03.036
  6. T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, "Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter," Electron. Lett. 36, 22 (2000). https://doi.org/10.1049/el:20000018
  7. Q. Wanga, H. Donga, G. Zhua, H. Suna, J. Jaquesb, A. B. Piccirillib, and N. K. Dutta, "All-optical logic OR gate using SOA and delayed interferometer," Opt. Commun. 260, 81-86 (2005).
  8. L. Wang, M. Zhang, Y. P. Zhao, and P. D. Ye, "Performance analysis of the all-optical XOR gate using SOA-MZI with a differential modulation scheme," Microwave Opt. Technol. Lett. 40, 173-177 (2004). https://doi.org/10.1002/mop.11320
  9. H. Sun, Q. Wang, H. Dong, and N. Dutta, "XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer," Opt. Express 13, 1892-1899 (2005). https://doi.org/10.1364/OPEX.13.001892
  10. T. Papakyriakopoulos, K. Vlachos, A. Hatziefremidis, and H. Avramopoulos, "Optical clock repetition-rate multiplier for high-speed digital optical logic circuits," Opt. Lett. 24, 717-719 (1999). https://doi.org/10.1364/OL.24.000717
  11. K. E. Stubkjaer, "Semiconductor Optical amplifier-based all-optical gates for high-speed optical processing," IEEE Quantum Electron. 6, 1428-1435 (2000). https://doi.org/10.1109/2944.902198
  12. J. M. Martinez, F. Ramos, and L. Marti, "All-optical packet header processor based on cascaded SOA-MZIs," Electron. Lett. 40, 894-895 (2004). https://doi.org/10.1049/el:20045209
  13. S. Nakamura, Y. Ueno, and K. Tajima, "168-Gb/s all-optical wavelength conversion with a symmetric-Mach-Zehndertype switch," IEEE Photon. Technol. Lett. 13, 1091 (2001). https://doi.org/10.1109/68.950745
  14. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 945 (1996).