DOI QR코드

DOI QR Code

Optical Approach for Increasing the Resolution of Displayed Multi-view Image from Projection Type of Auto-stereoscopic 3D Display System by Adopting a Commercial Spherical Lenticular Lens Sheet

프로젝션 기반 무안경 방식 멀티뷰 3D 디스플레이에서 구면 렌티큐라 렌즈 시트를 이용하여 재생된 입체영상의 해상도를 증가시키는 광학적 접근 방법

  • Sohn, Young-Sub (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Sung-Kyu (3D-Lab, IMRC, Korea Institute of Science and Technology) ;
  • Sohn, Kwanghoon (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Lee, Kwang-Hoon (3D Convergence Technology Research Center, Korea Photonics Technology Institute)
  • 손영섭 (연세대학교 전기전자공학과) ;
  • 김성규 (한국과학기술연구원 영상미디어센터) ;
  • 손광훈 (연세대학교 전기전자공학과) ;
  • 이광훈 (한국광기술원 3D융합기술연구센터)
  • Received : 2012.06.11
  • Accepted : 2012.07.03
  • Published : 2012.08.25

Abstract

Multi-view 3D displays based on a limited number of pixels have the problem that the stereo-scopic image has a low resolution because of increasing view number. To solve the problem of low resolution, we propose an optical approaching method that focuses the width of a unit pixel by using a commercial spherical shape lenticular lens sheet and increases the effective resolution by increasing the number of sources of light in the multi-view 3D display system based on projection type. The method was performed in such an order that several main derivable parameters were defined, and, through the theoretical and experimental result, the value of the contractible unit pixel width and the scalable effective resolution was derived in a given system environment. As a result, for the case that the ray of light from the projector transmitted the 25 LPI lenticular lens sheet which has the pitch size 1.016 mm, the focused unit pixel width was 0.19 mm and the scalable effective resolution was, at most, 5 times wider than the original one. In addition, the range of depth of focus was 1.496 mm, which shows us the range of thickness tolerances of commercial spherical shape lenticular lens sheet and sufficient optical alignment tolerances.

고정 화소수의 표시소자를 기반으로 하는 무안경 방식 다시점 3D 디스플레이는 시점수 증가에 따른 입체영상 저해상도 문제를 안고 있다. 이를 해결하기 위하여, 본 논문은 프로젝션 기반의 무안경식 다시점 3D 디스플레이 시스템에서 구면 형태의 상용 렌티큐라 렌즈시트를 사용하여 단위화소의 폭을 집속하고 광원수 증가에 따른 유효 해상도를 증가시켜 저해상도의 문제를 해결하는 광학적 접근 방법을 제시하였다. 제시된 방법은 주어진 시스템환경에서 도출 가능한 주요 파라메터의 정의 및 이론적, 실험적 결과를 통하여 축소 가능한 단위화소폭 및 확장 가능한 유효 해상도를 도출하는 수순으로 수행되었다. 결과적으로 1.016 mm의 단위화소폭을 기준으로 25 LPI의 렌티큐라 렌즈 시트를 투과하였을 경우, 축소된 폭(Beam waist)은 0.19 mm, 확장 가능한 유효 해상도는 최대 5배를 나타내었다. 이와 더불어, 초점심도(Depth of focus)는 1.496 mm로서 상용 렌티큐라 렌즈 시트의 두께 허용치 및 광학계 정렬 허용범위를 충분히 확보하였다.

Keywords

References

  1. N. A. Dodgson, "Autostereoscopic 3D displays," IEEE Computer Society 38, 31-36 (2005). https://doi.org/10.1109/MC.2005.252
  2. L. Kong, G. Jin, and X. Zhong, "An auto-stereoscopic projecting system based on parallax barrier and lenticular sheets," in Proc. Multimedia Technology (ICMT) (Zhejiang Braim International Hotel, China, July 2011), pp. 4-12.
  3. J. Courtial, "Standard and non-standard metarefraction with confocal lenslet arrays," Opt. Commun. 282, 2634-2641 (2009). https://doi.org/10.1016/j.optcom.2009.03.046
  4. E. Hecht, Optics (Addison Wesley, New York, USA, 2004), pp. 100-104.
  5. J. Vasco, P. J. Bártolo, B. Silva, and C. Galo, "Laser micromachining for mould manufacturing: II. manufacture and testing of mould inserts," Assembly Automation 27, 231-239 (2007). https://doi.org/10.1108/01445150710763259
  6. K. Roundy, "Propagation factor quantifies laser beam performance," Laser Focus World 12, 119-122 (1999).
  7. T. F. Johnston Jr. and T. F. Johnston, "Beam propagation (M2) measurement made as easy as it gets: the four-cuts method," Appl. Opt. 37, 4840-4850 (1998). https://doi.org/10.1364/AO.37.004840