DOI QR코드

DOI QR Code

Effects of Soybean and DJI Chungkukjang Powder on Blood Glucose and Serum Lipid Reduction in db/db Mice

대두 및 DJI 청국장 분말이 db/db 마우스의 혈당과 혈청 지질 감소에 미치는 영향

  • Received : 2012.04.30
  • Accepted : 2012.05.30
  • Published : 2012.08.31

Abstract

The hypoglycemic and hypolipidemic effects of autoclaved soy flour and DJI chungkukjang powder fermented using Bacillus subtilis DJI were investigated in type 2 diabetic animal models. After a 2-week adaptation period, the diabetic animal model db/db mice were divided into the diabetic control group (D-C group), a diabetic group fed with soybean (D-S group), and a diabetic group fed with DJI chungkukjang (D-CJ group). The body weight gain, food intake, water intake, liver, and adipose tissue weights were not significantly different between the experimental groups. The supplementation of DJI chungkukjang or autoclaved soy flour diet induced a marked reduction of fasting blood glucose, blood glycosylated hemoglobin levels, and glucose levels in the oral glucose tolerance test and AUC for glucose compared with the diabetic control group. However, DJI chungkukjang showed a much stronger antidiabetic effect than unfermented autoclaved soy flour. Serum insulin levels were the same among the groups. The supplementation of DJI chungkukjang or autoclaved soy flour diet also significantly lowered the serum triglyceride, total cholesterol, and LDL-cholesterol levels compared with the control diabetic group, while it elevated the HDL-cholesterol level in the serum. This data suggests that the dietary supplementation of autoclaved soy flour or DJI chungkukjang may be useful in the control of blood glucose in animals with type 2 diabetes.

본 연구는 대두와 B. subtilis DJI로 발효시켜 제조한 DJI 청국장 분말을 db/db 마우스에 장기간 급여하였을 경우 혈당 조절 및 지질대사 개선효과에 어느 것이 더 크게 영향을 미치는지 알아보기 위하여 실시하였다. 실험군은 당뇨병 대조군(D-C), 대두 분말 급여군(D-S군) 및 DJI 청국장 분말 급여군(D-CJ군)으로 3군으로 나누어 6주간 실시하였다. 체중증가량, 식이섭취량, 수분섭취량 및 간과 지방조직의 무게는 실험군 간에 차이가 없었다. 전혈의 공복 혈당 변화는 4주째부터 D-CJ군이 당뇨병 대조군인 D-C군에 비하여 유의하게 감소되었고, 6주째에는 D-S군과 D-CJ군이 D-C군에 비하여 각각 약 21.39%와 23.82%씩 유의하게 감소되었다. 혈청 중 인슐린 농도는 실험군 간에 차이가 나타나지 않았다. 당화 헤모글로빈의 함량은 D-C군에 비하여 D-CJ군이 유의하게 감소되었다. 내당능 검사에서는 대두 혹은 DJI 청국장 분말 급여로 90분부터 당부하가 유의적으로 감소하는 경향이었다. 혈당반응면적(AUC)은 DJI 청국장 분말 급여한 D-CJ군이 D-C군에 비하여 유의하게 낮았다. 혈청 중 총콜레스테롤 함량은 D-S군과 D-CJ군 모두 D-C군에 비하여 유의하게 감소되었으나, 중성지방과 LDL-콜레스테롤 함량은 DJI 청국장 분말을 급여한 D-CJ군만이 D-C군에 비하여 유의하게 감소되었다. 혈청 중 HDL-콜레스테롤 함량은 D-CJ군이 D-C군에 비하여 유의하게 증가되었다. 이상의 결과 대두 혹은 DJI 청국장 분말의 급여는 db/db 마우스의 혈당, 당화 헤모글로빈 및 혈청 지질 농도를 감소시키는데 긍정적으로 작용하는 것으로 보이나, 대두 분말보다는 DJI 청국장 분말 급여 시 혈당 조절 및 지질대사 개선효과가 더 우수한 것으로 나타났다.

Keywords

References

  1. Dennis BH, Haynes SG, Anderson J, Liu-Chi S, Hosking JD, Rifkind BM. 1985. Nutrient intakes among selected north American populations in the lipid research clinics prevalance study: composition of energy intake. Am J Clin Nutr 41: 312-329.
  2. Korean National Statistical Office. 2010. Annual report on the cause of death statistics 2010. Korean National Statistical Office, Seoul, Korea.
  3. Abate N. 2000. Obesity and cardiovascular disease. Pathogenetic role of the metabolic syndrome and therapeutic implications. J Diabetes Complications 14: 154-174. https://doi.org/10.1016/S1056-8727(00)00067-2
  4. Kim YY, Choue RW, Chung SH, Koo SJ. 1999. Anti-hyperglycemic effect of Cortex Mori radicis in db/db mice. Korean J Food Sci Technol 31: 1057-1064.
  5. Bailey CJ. 1999. Insulin resistance and antidiabetic drugs. Biochem Pharmacol 58: 1511-1520. https://doi.org/10.1016/S0006-2952(99)00191-4
  6. Koh JB, Choi MA. 1999. Effect of tea fungus/kombucha beverage on lipid metabolism in streptozotocin-induced diabetic male rats. J Korean Soc Food Sci Nutr 28: 613-618.
  7. Kohomoto T, Fukui F, Takaku H, Machida Y, Mitsuoka T. 1998. Effect of isomaltooligosaccharide on human fecal flora. Biofidobacteria Microflora 7: 61-67.
  8. Jenkins DJ, Wolever TM, Collier GR. 1987. The metabolic effects of a low glycemic index diet. Am J Clin Nutr 968: 46-51.
  9. Fontvielle AM, Acosta M, Rizkalla SW. 1988. A moderate switch from high to low glycemic index diet. Am J Clin Nutr 139: 43-49.
  10. Kwon TW. 2000. Soybean in the 21st century. Korea Soybean Society 17: 1-4.
  11. Friedbwald J, Ruhrah J. 1910. The use of the soybean as a food in diabetics. Am J Med Sci 140: 793-802. https://doi.org/10.1097/00000441-191012000-00002
  12. Park KY, Jung KO. 2005. Fermented soybean products as functional properties of Deonjang (fermented soybean paste). In Asian Functional Foods. Taylor & Francis Group, LLC, CRC Press, Boca Raton, FL, USA. p 555-596.
  13. Park JS. 2004. Cookwise approach of slow food: focused on traditional fermented sauces. Korean J Soc Food Cookery Sci 20: 317-334
  14. Lee YW, Kim JD, Zheng J, Row KH. 2007. Comparisons of isoflavones from Korean and Chinese soybean and processed products. Biochem Eng J 36: 49-53. https://doi.org/10.1016/j.bej.2006.06.009
  15. Kim AR, Lee JJ, Chang HC, Lee MY. 2009. Antioxidative effects of chungkukjang fermented using Bacillus subilis DJI in rats fed a high cholesterol diet. J Korean Soc Food Sci Nutr 38: 1699-1706. https://doi.org/10.3746/jkfn.2009.38.12.1699
  16. Ali AA, Velasquez MT, Hansen CT, Mohamed AI, Bhathena SJ. 2005. Modulation of carbohydrate metabolism and epetide hormones by soybean isoflavones and probiotics in obesity and diabetes. J Nutr Biochem 16: 693-699. https://doi.org/10.1016/j.jnutbio.2005.03.011
  17. Liu D, Zhen W, Yang Z, Carter JD, Si H, Reynolds KA. 2006. Genistein acutely stimulates insulin secretion in pancreatic ${\beta}$-cells through a cAMP-dependent protein kinase pathway. Diabetes 55: 1043-1050. https://doi.org/10.2337/diabetes.55.04.06.db05-1089
  18. Lee JS. 2006. Effects of soy protein and genstein on blood glucose, antioxidant enzyme activities, and lipid profile in streptozotocin-induced diabetic rats. Life Sci 79: 1578-1584. https://doi.org/10.1016/j.lfs.2006.06.030
  19. Park SA, Kim MJ, Jang JY, Choi MS, Yeo J, Lee MK. 2006. Effect of genistein and daidzein on antioxidant defense system in C57BL/KsJ-db/db mice. J Korean Soc Food Sci Nutr 35: 1159-1165. https://doi.org/10.3746/jkfn.2006.35.9.1159
  20. Ortmyer HK, Huang LC, Zhang L, Hansen B, Larner J. 1993. Acute effects of chiro-inositol administration in streptozotocin- diabetic rats, normal rats given a glucose load, and spontaneously insulin-resistance rhesis monkeys. Endocrinol 132: 646-651. https://doi.org/10.1210/en.132.2.646
  21. Kwon DY, Hong SM, Ahn IS, Kim S. 2011. Isoflavonoids and peptides from meju, long-term fermented soybean, increase insulin sensitivity and exert insulinotropic effects in vitro. Nutr 27: 244-252. https://doi.org/10.1016/j.nut.2010.02.004
  22. Kim JI, Kang MJ, Kwon TW. 2003. Antidiabetic effect of soybean and choungkukjang. Korea Soybean Digest 20: 44- 52.
  23. Kwon DY, James W, Daily I, Kim HJ, Park S. 2010. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr Res 30: 1-13. https://doi.org/10.1016/j.nutres.2009.11.004
  24. Chang M, Kim IC, Chnag HC. 2010. Effect of solar salt on the quality characteristics of Doenjang. J Korean Soc Food Sci Nutr 39: 116-124. https://doi.org/10.3746/jkfn.2010.39.1.116
  25. Min HK, Kim HJ, Chang HC. 2008. Growth-inhibitory effect of the extract of porphyran-chungkukjang on cancer cell. J Korean Soc Food Sci Nutr 37: 826-833. https://doi.org/10.3746/jkfn.2008.37.7.826
  26. Lee JJ, Kim AR, Chang HC, Lee MY. 2009. Antioxidative effects of Chungkukjang preparation by adding solar salt. Korean J Food Preserv 16: 238-245.
  27. Kim AR, Lee JJ, Chang HC, Lee MY. 2010. Body-weightloss and cholesterol-lowering effects of Cheonggukjang (a fermented soybean paste) given to rats fed a high-fat/ high-cholesterol diet. Korean J Food Preserv 17: 688-697.
  28. Friedwald WT, Levy RL, Fredrickson DS. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18: 499-502.
  29. Pruessner JC, Kirschbaum C, Meinlschmid G, Hellharmmer DH. 2003. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology 28: 916-931. https://doi.org/10.1016/S0306-4530(02)00108-7
  30. Stanley M, Lee SB. 1986. Chronic effects of and ${\alpha}$-glucosidase inhibitor (Bay O 1248) on intestinal disaccharidase activity in normal and diabetic mice. J Pharm Exp Therapeutics 240: 123-137.
  31. Park SA, Choi MS, Cho SY, Seo JS, Jung UJ, Kim MJ, Sung MK, Park YB, Lee MK. 2006. Genistein and daidzein modulate hepatic glucose and lipid regulation enzyme activities in C57BL/KsJ-db/db mice. Life Sci 79: 1207-1213. https://doi.org/10.1016/j.lfs.2006.03.022
  32. Seo BH, Kim KO, Lee JH, Lee HS. 2011. Effects of phytoestrogens on glucose metabolism in C57BL/KsOlaHsd-db/db mice. Korean J Nutr 44: 275-283. https://doi.org/10.4163/kjn.2011.44.4.275
  33. Fujita H, Yamagami T. 2001. Fermented soybean-derived touchi-extract with anti-diabetic effect via alpha-glucosidase inhibitory action in a long-term administration study with KKAy mice. Life Sci 70: 219-227. https://doi.org/10.1016/S0024-3205(01)01381-9
  34. Kim DJ, Jeong YJ, Kwon JH, Moon KD, Kim HJ, Jeon SM, Lee MK, Park YB, Choi MS. 2008. Beneficial effect of chungkukjang on regulation blood glucose and pancreatic ${\beta}$-cell functions in C75BL/KsJ-db/db mice. J Med Food 11: 215-223. https://doi.org/10.1089/jmf.2007.560
  35. Goldberg RB. 1981. Lipid disorders in diabetes. Diabetes Care 4: 561-572. https://doi.org/10.2337/diacare.4.5.561
  36. Ivorra MD, Paya M, Villar A. 1988. Hypoglycemic and insulin release effects of tormentic acid: a new hypoglycemic natural product. Plant Med 54: 282-285. https://doi.org/10.1055/s-2006-962433
  37. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stepens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL. 1996. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334: 292-295. https://doi.org/10.1056/NEJM199602013340503
  38. Grerre-Millo M, Gervois P, Raspe E, Madsen L, Poulain P, Derudas B, Hervert JM, Sinegar DA, Sillsin TM, Fruchart JC, Berge RK, Staels B. 2002. Peroxisome proliferator-activated receptor activators improve insulin sensitivity and reduce adiposity. J Biol Chem 275: 16638-16642.
  39. Lee HJ, Park MK, Lee KI, An YJ, Kim JM, Park YJ, Han Y, Hong SH, Choi SS, Yoo YH, Suh JD, Kim DK. 2007. Prevention of diabetes by fenofibrate in OLETE rtas: hepatic mechanism for reducing visceral adiposity. J Kor Diabetes Assoc 31: 63-74. https://doi.org/10.4093/jkda.2007.31.1.63
  40. Ishihara K, Fukuchi Y, Mizunoya W, Mita Y, Fukuya Y, Fuhiki T, Yasumoto K. 2003. Amino acid composition of soybean protein increased postprandial carbohydrate oxidation in diabetic mice. Biosci Biotechnol Biochem 67: 2505-2511. https://doi.org/10.1271/bbb.67.2505
  41. Han JH. 2000. Antidiabetic effect of soybean and chongkukjang. PhD Dissertation. Inje University, Busan, Korea.
  42. Jung SH, Park YJ. 2001. The effects of isolated soyprotein and salt restriction on serum lipid and kidney function of streptozotocin-induced diabetic rats. J East Asian Soc Dietary Life 11: 368-378.
  43. Stancoven A, McGuire DK. 2007. Preventing macrovascular complications in type 2 diabetes mellitus: glucose control and beyond. Am J Cardiol 99: 5H-11H. https://doi.org/10.1016/S0002-9149(07)00581-4
  44. Gerich JE. 2003. Clinical significance, pathogenesis, and management of postprandial hyperglycemia. Arch Intern Med 163: 1306-1316. https://doi.org/10.1001/archinte.163.11.1306
  45. Hanefed M, Temelkova-Kurktschiev T. 2002. Control of post-prandial and hyperglycemia-an essential part of good diabetes treatment and prevention of cardiovascular complications. Nutr Metab Cardiovasc Dis 12: 98-107.
  46. Lee SH, Lim SW, Lee YM, Hur JM, Lee HS, Kim DK. 2010. Anti-diabetic effects of Triticum aestivum L. water extracts in db/db mice as an animal model of diabetes mellitus type II. Kor J Pharmacogn 41: 282-288.
  47. Robertson RP. 2004. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279: 42351-42354. https://doi.org/10.1074/jbc.R400019200
  48. Reaven JW. 1987. Impact of diabetes on mortality after the first myocardial infarction. The FINMONICA myocardial infarction register study group. Am J Med 83: 31-40.
  49. Goren T, Gastelli WP, Hjortland MC, Kannel WB, Dawber TR. 1997. High density lipoprotein as a protective factor against coronary heart disease: the Fremingham study. Am J Med 62: 707-710.
  50. Hermansen K, Sondergaard M, Hoie L, Carstensen M, Brock B. 2001. Beneficial effects of a soy-based dietary supplement on lipid levels and cardiovascular risk markers in type 2 diabetic subjects. Diabetes Care 24: 228-233. https://doi.org/10.2337/diacare.24.2.228

Cited by

  1. Effects of Cheonggukjang Powder Made with Black Foods on Liver Function and Lipid Composition in Streptozotocin-induced Diabetic Rats vol.29, pp.6, 2013, https://doi.org/10.9724/kfcs.2013.29.6.699
  2. Anti-diabetic effects of Allium tuberosum rottler extracts and lactic acid bacteria fermented extracts in type 2 diabetic mice model vol.22, pp.1, 2015, https://doi.org/10.11002/kjfp.2015.22.1.134
  3. 제2형 당뇨 마우스에서 십조탕(十棗湯)에 의한 혈당 및 신기능 부전 개선효과 vol.32, pp.1, 2017, https://doi.org/10.6116/kjh.2017.32.1.15.