DOI QR코드

DOI QR Code

Real-Time Dynamic Analysis of Vehicle with Experimental Vehicle Model

실험기반 차량모델을 이용한 실시간 차량동역학 해석

  • Yoo, Wan-Suk (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Na, Sang-Do (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Kim, Kwang-Suk (Dept. of Automotive Engineering, Inha Technical College)
  • Received : 2012.05.24
  • Accepted : 2012.07.10
  • Published : 2012.09.01

Abstract

The paper presents an Experimental Vehicle Model (EVM), that utilizes the kinematic characteristics of suspensions from SPMD test data. The relative displacement and orientation of a wheel with respect to the body are represented as a function of the vertical displacement of the wheel. The equations of motion of the vehicle are formulated in terms of local coordinates that do not require coordinate transformation, which improves the efficiency of dynamic analysis. The EOM was modularized for each suspension model, and a $6{\times}6$ vehicle model was obtained by combining six suspensions. The analysis results were compared with ADAMS to verify the accuracy of the EVM. This study also verifies the feasibility of real-time simulation with the developed EVM. For a vehicle simulation for 1 ms, the real simulation time required within 20% of the prescribed time. This result shows that the EVM meets the real-time simulation requirements.

실시간 차량동역학 해석을 위해서는 효율적인 차량 모델이 필요하게 된다. 효율성을 높이기 위해 집중질량모델로 가정하면 현가장치의 특성을 고려하기 어렵게 되며, 현가장치의 특성을 모두 고려한 다물체동역학 모델에서는 효율성이 떨어진다. 그러므로 본 논문에서는 다물체동역학 모델링을 사용하되 해석의 효율성을 저하시키는 현가장치의 각종 요소들의 효과는 기구정역학 실험으로 추출된 특성그래프로 대체함으로써 효율성도 기하고자 시도하였다. $6{\times}6$ 차량을 차체와 휠로 구성된 차량으로 모델을 정의하였고, 다물체동역학 모델인 ADAMS 결과와 비교하여 실험적 모델의 유용성을 검증하였다. 그리고 검증된 실험적 차량모델을 RT-LAB을 활용한 실시간 시뮬레이션 환경에 삽입하여, 실시간성 시뮬레이션의 가능성을 검증하였다.

Keywords

References

  1. Jung, H.K., 2004, "Vehicle Dynamics Analysis and Chassis Design Using the Functional Suspension Model," Ph.D thesis, Kookmin University.
  2. Jung, H.K. and Kim, S.S., 2004, "Development of an Efficient Vehicle Dynamics Model Using Massless Link of a Suspension," Vol.13 No.1, KSAE, pp 99-108.
  3. Sohn, J.H., Lee, S.K., Ok, J.K. and Yoo, W.S., 2007, "Comparison of Semi-Physical and Black-Box Model for Vehicle Dynamics Simulation," Vol. 21 No.3, Journal of Mechanical Science and Technology, pp.264-271 https://doi.org/10.1007/BF02916287
  4. Choi, D.H. and Yoo, W.S., 2000, "Efficiency of a Symbolic Computation Method for the Real Time Simulation," Vol.21 No.7, Trans. Of the KSME A, pp.1878-1881
  5. Han, D.H., Sohn, J.H., Kim, K.S. and Yoo, W.S., 2000, "Development and Comparative Study on Tire Models in the AutoDyn7 Program," Vol. 14 No.7, KSME Int. Journal, pp.730-736
  6. Cho, D.H., Lee, J.H., Yi, K.C. and Yoo, W.S., 2009, "A Study on the Real-Time Analysis of a 6*6 Autonomous Vehicle," Vol. 33 No.12, Trans. Of the KSME A, pp.1433-1441 https://doi.org/10.3795/KSME-A.2009.33.12.1433
  7. Na, S.D., Kim, B.M. and Yoo, W.S., 2011, "4*4 Vehicle Simulation Using the Functional Suspension Model," Spring Conference Proceedings of the KSME, pp.71-72.
  8. Kim, B.M., Na, S.D., Kim, K.S. and Yoo, W.S., 2012, "Verification of a Vehicle Dynamic Model for Real- Time HILS," Conference Proceedings of the KSME, pp.45-46.

Cited by

  1. Dynamic vehicle model for handling performance using experimental data vol.7, pp.11, 2015, https://doi.org/10.1177/1687814015618126
  2. Simplified Model of Wheel Type Dog-Horse Robot to Reduce Dynamic Analysis Time vol.40, pp.2, 2016, https://doi.org/10.3795/KSME-A.2016.40.2.157