DOI QR코드

DOI QR Code

Effect of Oxygen Annealing on the Set Voltage Distribution Ti/MnO2/Pt Resistive Switching Devices

  • Choi, Sun-Young (Interface Control Research Center, Korea Institude of Science and Technology) ;
  • Yang, Min-Kyu (Semiconductor R&D Center, Semiconductor Business, Samsung Electronics) ;
  • Lee, Jeon-Kook (Interface Control Research Center, Korea Institude of Science and Technology)
  • Received : 2012.06.13
  • Accepted : 2012.07.06
  • Published : 2012.08.27

Abstract

Significant improvements in the switching voltage distribution are required for the development of unipolar resistive memory devices using $MnO_x$ thin films. The $V_{set}$ of the as-grown $MnO_x$ film ranged from 1 to 6.2 V, whereas the $V_{set}$ of the oxygen-annealed film ranged from 2.3 to 3 V. An excess of oxygen in an $MnO_x$ film leads to an increase in $Mn^{4+}$ content at the $MnO_x$ film surface with a subsequent change in the $Mn^{4+}/Mn^{3+}$ ratio at the surface. This was attributed to the change in $Mn^{4+}/Mn^{3+}$ ratios at the $MnO_x$ surface and to grain growth. Oxygen annealing is a possible solution for improving the switching voltage distribution of $MnO_x$ thin films. In addition, crystalline $MnO_x$ can help stabilize the $V_{set}$ and $V_{reset}$ distribution in memory switching in a Ti/$MnO_x$/Pt structure. The improved uniformity was attributed not only to the change of the crystallinity but also to the redox reaction at the interface between Ti and $MnO_x$.

Keywords

References

  1. D. C. Kim, S. Seo, S. E. Ahn, D. -S. Suh, M. J. Lee, B. -H. Park, I. K. Yoo, I. G. Baek, H. -J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U-In Chung, J. T. Moon and B. I. Ryu, Appl. Phys. Lett., 88, 202102 (2006). https://doi.org/10.1063/1.2204649
  2. B. J. Choi, S. Choi, K. M. Kim, Y. C. Shin, C. S. Hwang, S. Y. Hwang, S. Cho, S. Park and S. -K. Hong, Appl. Phys. Lett., 89, 012906 (2006). https://doi.org/10.1063/1.2219726
  3. W. R. Hiatt and T. W. Hickmott, Appl. Phys. Lett., 6, 106 (1965). https://doi.org/10.1063/1.1754187
  4. C. Y. Lin, C. -Y. Wu, C. -Y. Wu, T. C. Lee, F. L. Yang, C. Hu and T. Y. Tseng, IEEE Electron Device Lett., 28, 366 (2007). https://doi.org/10.1109/LED.2007.894652
  5. B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg and S. Tiedke, J. Appl. Phys., 98, 033715 (2005). https://doi.org/10.1063/1.2001146
  6. S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. -S. Kim, J. S. Choi and B. H. Park, Appl. Phys. Lett., 85, 5655 (2004). https://doi.org/10.1063/1.1831560
  7. D. S. Shang, L. D. Chen, Q. Wang, W. D. Yu, X. M. Li, J. R. Sun and B. G. Shen, J. Appl. Phys., 105, 063511 (2009). https://doi.org/10.1063/1.3082762
  8. R. Dong, W. F. Xiang, D. S. Lee, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi, M. J. Kwon, M. Chang, M. Jo, M. Hasan and H. Hwang, Appl. Phys. Lett., 90, 182118 (2007). https://doi.org/10.1063/1.2736268
  9. M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S. E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I. K. Yoo, D. H. Seo, X. S. Li, J. B. Park, J. H. Lee and Y. Park, Nano Lett., 9, 1476 (2009). https://doi.org/10.1021/nl803387q
  10. M. K. Yang, J. W. Park, T. K. Ko and J. K. Lee, Appl. Phys. Lett., 95, 042105 (2009). https://doi.org/10.1063/1.3191674