DOI QR코드

DOI QR Code

Characterizations of Modified Silica Nanoparticles(II) ; Preparation and Application of Silica Nanoparticles as a Environmentally Filler

  • Min, Seong-Kee (Department of Polymer Engineering, Pukyong National University) ;
  • Bae, Deok-Kwun (Department of Polymer Engineering, Pukyong National University) ;
  • Park, Sang-Bo (Department of Polymer Engineering, Pukyong National University) ;
  • Yoo, Seong-Il (Department of Polymer Engineering, Pukyong National University) ;
  • Lee, Won-Ki (Department of Polymer Engineering, Pukyong National University) ;
  • Park, Chan-Young (Department of Polymer Engineering, Pukyong National University) ;
  • Seul, Soo-Duk (Department of Chemical Engineering, Dong-A University)
  • Received : 2012.05.21
  • Accepted : 2012.07.28
  • Published : 2012.08.27

Abstract

A chemical process involves polymerization within microspheres, whereas a physical process involves the dispersion of polymer in a nonsolvent. Nano-sized monodisperse microspheres are usually prepared by chemical processes such as water-based emulsions, seed suspension polymerization, nonaqueous dispersion polymerization, and precipitation polymerizations. Polymerization was performed in a four-necked, separate-type flask equipped with a stirrer, a condenser, a nitrogen inlet, and a rubber stopper for adding the initiator with a syringe. Nitrogen was bubbled through the mixture of reagents for 1 hr. before elevating the temperature. Functional silane (3-mercaptopropyl)trimethoxysilane (MPTMS) was used for the modification of silica nanoparticles and the self-assembled monolayers obtained were characterized by X-ray photoelectron spectroscopy (XPS), laser scattering system (LSS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), elemental analysis (EA), and thermogravimetric analysis (TGA). In addition, polymer microspheres were polymerized by radical polymerization of ${\gamma}$-mercaptopropyl modified silica nanoparticles (MPSN) and acrylamide monomer via precipitation polymerization; then, their characteristics were investigated. From the elemental analysis results, it can be concluded that the conversion rate of acrylamide monomer was 93% and that polyacrylamide grafted to MPSN nanospheres via the radical precipitation polymerization with AAm in ethanol solvent. The microspheres were successfully polymerized by the 'graft from' method.

Keywords

References

  1. E. C. C. Goh and H. D. H. Stover, Macromolecules, 35, 9983 (2002). https://doi.org/10.1021/ma0211028
  2. J. Gao and B. J. Frisken, Langmuir, 19, 5212 (2003). https://doi.org/10.1021/la0269762
  3. J. Gao and B. J. Frisken, Langmuir, 19, 5217 (2003). https://doi.org/10.1021/la034207s
  4. D. Gan and L. A. Lyon, Macromolecules, 35, 9634 (2002). https://doi.org/10.1021/ma021186k
  5. C. D. Jones and L. A. Lyon, Macromolecules, 36, 1988 (2003). https://doi.org/10.1021/ma021079q
  6. J. S. Downey, R. S. Frank, W. -H. Li and H. D. H. Stover, Macromolecules, 32, 2838 (1999). https://doi.org/10.1021/ma9812027
  7. W. -H. Li and H. D. H. Stover, J. Polymer Sci. Polymer Chem., 36, 1543 (1998). https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R
  8. Y. Naka, I. Kaetsu, Y. Yamamoto and K. Hayashi, J. Polymer Sci. Polymer Chem., 29, 1197 (1991). https://doi.org/10.1002/pola.1991.080290814
  9. Y. Naka and Y. Yamamoto, J. Polymer Sci. Polymer Chem., 30, 2149 (1992). https://doi.org/10.1002/pola.1992.080301008
  10. R. H. Pelton and P. Chibante, Colloid. Surface., 20, 247 (1986). https://doi.org/10.1016/0166-6622(86)80274-8
  11. H. Kawaguchi, M. Kawahara, N. Yaguchi, F. Hoshino and Y. Ohtsuka, Polymer J., 20, 903 (1988). https://doi.org/10.1295/polymj.20.903
  12. H. Kawaguchi, Y. Yamada, S. Kataoka, Y. Morita and Y. Ohtsuka, Polymer J., 23, 955 (1991). https://doi.org/10.1295/polymj.23.955
  13. C. M. Tseng, Y. Y. Lu, M. S. El-Aasser and J. W. Vanderhoff, J. Polymer Sci. Polymer Chem., 24, 2995 (1986). https://doi.org/10.1002/pola.1986.080241126
  14. A. Tuncel, R. Kahraman and E. Piskin, J. Appl. Polymer Sci., 50, 303 (1993). https://doi.org/10.1002/app.1993.070500212
  15. Y. Chen and H. -W. Yang, J. Polymer Sci. Polymer Chem., 30, 2765 (1992). https://doi.org/10.1002/pola.1992.080301312
  16. S. Kobayashi, H. Uyama, J. H. Choi and Y. Matsumoto, Polymer Int., 30, 265 (1993). https://doi.org/10.1002/pi.4990300221
  17. S. -K. Min, C. -Y. Park, W. -K. Lee, S. -D. Seul, Kor. J. Mater. Res., 22(6), 275 (2012). https://doi.org/10.3740/MRSK.2012.22.6.275

Cited by

  1. Synthesis of Poly Imide/α’ω’-di Poly Acrylamide (3-Mercaptopropyl) Trimethoxysilane Terminated Copolymer vol.26, pp.9, 2016, https://doi.org/10.3740/MRSK.2016.26.9.478