DOI QR코드

DOI QR Code

Research Trend of Oxide Magnetic Films with Atomically Controlled Pulsed Laser Deposition

원자층 제어 PLD를 이용한 산화물 자성 박막 연구의 동향

  • Kim, Bong-Ju (Department of Physics, Pusan National University) ;
  • Kim, Bog-G. (Department of Physics, Pusan National University)
  • Received : 2012.07.11
  • Accepted : 2012.08.09
  • Published : 2012.08.31

Abstract

Recently, there have been considerable interests in various thin film growth techniques with atomically controllable thickness. Among them, atomically controlled pulsed laser deposition (PLD) technique is quite popular. We have developed advanced thin film growth technique using PLD and Reflection high energy electron diffraction (RHEED). Using the technique, the growth of oxide thin films with the precisely controllable thickness has been demonstrated. In addition, our technique can be applied to high quality thin film growth with minimal defect and bulk chemical composition. In this paper, our recent progresses as well as the current research trend on oxide thin films will be summarized.

최근 들어 박막의 원자층 두께를 정밀하게 제어하는 여러 가지 박막 성장 방법에 관한 관심이 높다. 그 중에서 원자층 두께를 조절할 수 있는 PLD 방법은 매우 폭넓은 관심을 받고 있다. 우리는 기존의 PLD 방법과 Reflection high energy electron diffraction(RHEED)을 이용하여 원자층 제어 PLD 방법을 구현하였다. 이러한 방법을 이용하여 산화물에서의 원자층 두께를 정밀하게 제어하는 방법에 관한 실험을 수행하였다. 이와 같은 실험방법이 가지는 다양한 조건을 제어하여 최소한의 결함을 가지고 결정의 화학적 조성에 근접하는 고품질의 박막을 구축하여 이를 바탕으로 다양한 실험을 수행하였다. 본 논문에서는 최근 이러한 박막을 이용한 우리의 실험결과와 타 그룹의 실험 동향을 정리하여 보았다.

Keywords

References

  1. M. N. Baibich, J. M. Broto, A. Fert, F. N. V. Dau, and F. Petroff, Phys. Rev. Lett. 61, 2472 (1988). https://doi.org/10.1103/PhysRevLett.61.2472
  2. M. Tsoi, A. G. M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, and P. Wyder, Phys. Rev. Lett. 80, 4281 (1998). https://doi.org/10.1103/PhysRevLett.80.4281
  3. E. B. Myers, C. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, Science 285, 867 (1999). https://doi.org/10.1126/science.285.5429.867
  4. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001). https://doi.org/10.1126/science.1065389
  5. Y. Tokura, "Colossal Magnetoresistive Oxides", Gordon & Breach, London (2000).
  6. H. Y. Hwang, S.-W. Cheong, P. G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. 75, 914 (1995). https://doi.org/10.1103/PhysRevLett.75.914
  7. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998). https://doi.org/10.1103/RevModPhys.70.1039
  8. J. H. Song, T. Susaki, and H. Y. Hwang, Advanced Materials 20, 2528 (2008). https://doi.org/10.1002/adma.200701919
  9. D. A. Muller, L. Fitting Kourkoutis, M. Murfitt, J. H. Song, H. Y. Hwang, J. Silcox, N. Dellby, and O. L. Krivanek, Science 319, 1073 (2008). https://doi.org/10.1126/science.1148820
  10. L. Fitting Kourkoutis, J. H. Song, H. Y. Hwang, and D. A. Muller, PNAS 107, 11682 (2010). https://doi.org/10.1073/pnas.1005693107
  11. B. Kim, D. Kwon, J. H. Song, Y. Hikita, Bog G. Kim, and H. Y. Hwang, Solid State Commun. 150, 598 (2010). https://doi.org/10.1016/j.ssc.2009.12.041
  12. B. Kim, D. Kwon, T. Yajima, C. Bell, Y. Hikita, Bog G. Kim, and Harold Y. Hwang, Appl. Phys. Lett. 99, 092513 (2011). https://doi.org/10.1063/1.3628659
  13. H. Yamada, Y. Ogawa, Y. Ishii, H. Sato, M. Kawasaki, H. Akoh, and Y. Tokura, Science 305, 646 (2004). https://doi.org/10.1126/science.1098867
  14. M.-B. Lepetit, B. Mercey, and C. Simon, Phys. Rev. Lett. 108, 087202 (2012). https://doi.org/10.1103/PhysRevLett.108.087202
  15. H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nature Mater. 11, 103 (2012). https://doi.org/10.1038/nmat3223
  16. W. W. Gao, J. R. Sun, X. Y. Lu, D. S. Shang, J. Wang, F. X. Hu, and B. G. Shen, J. Appl. Phys. 109, 07C729 (2011).
  17. A. Tebano, C. Aruta, S. Sanna, P. G. Medaglia, G. Balestrino, A. A. Sidorenko, R. De Renzi, G. Ghiringhelli, L. Braicovich, V. Bisogni, and N. B. Brookes, Phys. Rev. Lett. 100, 137401 (2008). https://doi.org/10.1103/PhysRevLett.100.137401
  18. M. Huijben, L. W. Martin, Y.-H. Chu, M. B. Holcomb, P. Yu, G. Rijnders, D. H. A. Blank, and R. Ramesh, Phys. Rev. B 78, 094413 (2008). https://doi.org/10.1103/PhysRevB.78.094413
  19. M. Bowen, M. Bibes, A. Barthelemy, J.-P. Contour, A. Anane, Y. Lemaitre, and A. Fert, Appl. Phys. Lett. 82, 233 (2003). https://doi.org/10.1063/1.1534619
  20. R. Werner, A. Y. Petrov, L. Mino, R. Kleiner, D. Koelle, and B. A. Davidson, Appl. Phys. Lett. 98, 162505 (2011). https://doi.org/10.1063/1.3581885
  21. R. Guerrero, A. Solignac, C. Fermon, M. Pannetier-Lecoeur, Ph. Lecoeur, and R. Fernandez-Pacheco, Appl. Phys. Lett. 100, 142402 (2012). https://doi.org/10.1063/1.3698393
  22. R. Werner, M. Weiler, A. Yu. Petrov, B. A. Davidson, R. Gross, R. Kleiner, S. T. B. Goennenwein, and D. Koelle, Appl. Phys. Lett. 99, 182513 (2011). https://doi.org/10.1063/1.3659301
  23. E. T. Wertz and Q. Li, Appl. Phys. Lett. 90, 142506 (2007). https://doi.org/10.1063/1.2718481
  24. T. Yajima, Y. Hikita, and H. Y. Hwang, Nature Materials 10, 198 (2011). https://doi.org/10.1038/nmat2946
  25. Y. Hikita, Y. Kozuka, T. Susaki, H. Takagi, and H. Y. Hwang, Appl. Phys. Lett. 90, 143507 (2007). https://doi.org/10.1063/1.2719157
  26. Y. Hikita, M. Kawamura, C. Bell, and H. Y. Hwang, Appl. Phys. Lett. 98, 192103 (2011). https://doi.org/10.1063/1.3589375