DOI QR코드

DOI QR Code

Local Buckling and Inelastic Behaviour of 800 MPa High-Strength Steel Beams

800MPa급 고강도강 보 부재의 국부좌굴 및 비탄성 거동

  • 이철호 (서울대학교 공과대학 건축학과) ;
  • 한규홍 (서울대학교 공과대학 건축학과) ;
  • 김대경 (서울대학교 공과대학 건축학과) ;
  • 박창희 (서울대학교 공과대학 건축학과) ;
  • 김진호 ((재)포항산업과학연구원) ;
  • 이승은 ((재)포항산업과학연구원) ;
  • 하태휴 (서울대학교 공과대학 건축학과)
  • Received : 2012.03.08
  • Accepted : 2012.08.03
  • Published : 2012.08.27

Abstract

Flexural tests on full-scale H-shaped beams, built up from high-strength steels (HSB800 and HSA800) with a nominal tensile strength of 800 MPa, was carried out to study the effect of flange slenderness of high-strength steel on flexural strength and rotation capacity. The primary objective was to investigate the appropriateness of extrapolating current stability criteria (originally developed for ordinary steel) to high-strength steel. The performance of high-strength steel specimens was very satisfactory from the strength, but not from the rotation capacity, perspective. The inferior rotation capacity of high-strength steel beams was shown to be directly attributable to the absence of a distinct yield plateau and the high yield ratio of the material. Residual stress measurements reconfirmed that the magnitude of the residual stress is almost independent of the yield stress of the base metal.

본 연구에서는 고강도 강재의 플랜지 폭두께비가 강도 및 회전능력에 미치는 영향을 분석하고자 인장강도 800MPa급 고강도 강재인 HSB800, HSA800의 조립 H형강 보에 대해 실물대실험 연구를 수행하였다. 일반강재의 실험결과를 바탕으로 정립된 현행 기준의 폭두께비 규정을 고강도 강재에 그대로 확대 적용할 수 있는지의 여부를 평가하는 것을 연구의 주 목표로 하였다. 실험결과 고강도 휨부재는 강도측면에서 매우 만족스러운 성능을 발현하였으나, 회전능력측면에서는 일반강재 대비 부족한 성능을 발휘하였다. 이러한 고강도 강재의 부족한 회전능력은 항복참(yield plateau)의 부재와 높은 항복비를 갖는 고강도강의 재료적 특성과 관련됨을 입증하였다. 잔류응력 측정결과 잔류응력의 크기는 소재의 항복강도와 무관함을 재확인 할 수 있었다.

Keywords

References

  1. 대한건축학회(2009) 2009 KBC: 건축구조기준 및 해설.
  2. 이철호, 한규홍, 박창희, 김진호, 이승은, 하태휴(2011) 국부좌굴을 고려한 고강도 조립 H형강 부재의 휨성능 실험, 한국강구조학회 논문집, 한국강구조학회, 제23권, 제4호, pp. 417-428.
  3. 이철호, 김대경, 한규홍, 김진호, 이승은, 하태휴(2012) 고강도 강재 단주의 압축강도 및 잔류응력 평가, 한국강구조학회논문집, 한국강구조학회, 제24권, 제1호, pp.23-34.
  4. AWS (2010) AWS D1.1/D1.1M-2010 Structural Welding Code-steel, AWS, Miami, FL.
  5. Bansal, J.P. (1971) The Lateral Instability of continuous Steel Beams, Ph.D. Dissertation, Texas University, Austin, TX.
  6. Bjorhovde, R. (2004) Development and use of high performance steel, Journal of Constructional Steel Research, Vol. 60, pp.393-400. https://doi.org/10.1016/S0143-974X(03)00118-4
  7. Galambos, T.V. (1968) Deformation and Energy Absorption Capacity of Steel Structures in the Inelastic Range, AISI Bulletin No. 8.
  8. Galambos, T.V., Hajjar, J.F. and Earls, C.J. (1997) Required Properties of High-Performance Steels, Report No. NISTIR 6004, NIST.
  9. Green, P.G. (2000) The Inelastic Behavior of Flexural Members Fabricated from High Performance Steel, Ph.D. Dissertation, Lehigh University, Bethlehem, PA.
  10. ISO/TR 29381 (2008) Metallic materials-measurement of mechanical properties by an instrumented indentation test- Indentation tensile properties, International Organization for Standardization, Geneva 20, Switzerland
  11. Kemp, A.R. (1996) Inelastic Local and Lateral Buckling in Design Code, Journal of Structural Engineering, ASCE, Vol. 122, No. 4, pp.374-382. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:4(374)
  12. Lay, M.G. (1965a) Inelastic Steel Beams under Uniform Moment, Journal of Structural Division, ASCE, Vol. 91, No. ST6, pp.67-93.
  13. Lay, M.G. (1965b) Flange Local Buckling in Wide-Flange Steel Beams, Journal of Structural Division, ASCE, Vol. 91, No. ST6, pp.95-116.
  14. Lukey, A.F. and Adams, P.F. (1969) Rotation Capacity Of Beams Under Moment Gradient, Journal of Structural Division, ASCE, Vol. 95, No. ST6, pp.1173-1188.
  15. McDermott, J.F. (1969) Plastic Bending of A514 Steel Beams, Journal of Structural Division, ASCE, Vol. 95, No. ST9, pp.1851-1871.
  16. Rasmussen, K.J.R. and Hancock, G.J. (1992) Slenderness Limits for High Strength Steel Sections, Journal of Constructional Steel Research, Vol. 23, pp.73-96. https://doi.org/10.1016/0143-974X(92)90037-F
  17. Ricles, J.M., Sause, R., and Green, P.S. (1998) High-Strength Steel: Implications of Material and Geometric Characteristics On Inelastic Flexural Behavior, Journal of Engineering Structures, Vol. 20, No. 4-6, pp.323-335. https://doi.org/10.1016/S0141-0296(97)00024-2

Cited by

  1. Inelastic Buckling Analysis of Frames with Semi-Rigid Joints vol.26, pp.3, 2014, https://doi.org/10.7781/kjoss.2014.26.3.143
  2. Seismic Performance of High Strength Steel(HSA800) Beam-to-Column Connections with Improved Horizontal Stiffener vol.26, pp.4, 2014, https://doi.org/10.7781/kjoss.2014.26.4.361
  3. Review of Design Flexural Strengths of Steel–Concrete Composite Beams for Building Structures vol.10, pp.S3, 2016, https://doi.org/10.1007/s40069-016-0146-7
  4. Effects of flange and web slenderness ratios on elastic flange local buckling of doubly symmetric I-girders vol.17, pp.8, 2016, https://doi.org/10.5762/KAIS.2016.17.8.456
  5. A Study on Deformation Capacity of High Strength Steel Beam-to-Column Connections According to Welding Detail at Beam End vol.26, pp.4, 2014, https://doi.org/10.7781/kjoss.2014.26.4.335
  6. Numerical Analysis of Inelastic Lateral Torsional Buckling Strength of HSB800 Steel Plate Girders with Doubly Symmetric Section vol.25, pp.2, 2013, https://doi.org/10.7781/kjoss.2013.25.2.141
  7. Flange Local Buckling(FLB) for Flexural Strength of Plate Girders with High Performance Steel(HSB 800) vol.26, pp.2, 2014, https://doi.org/10.7781/kjoss.2014.26.2.091
  8. Numerical Study of High-strength Steel CHS X-joints Including Effects of Chord Stresses vol.30, pp.2, 2018, https://doi.org/10.7781/kjoss.2018.30.2.115
  9. HSA800 후판재의 완전용입 맞댐용접부 휨-인장강도 실험 vol.26, pp.5, 2014, https://doi.org/10.7781/kjoss.2014.26.5.407