DOI QR코드

DOI QR Code

POWER SPECTRUM ANALYSIS OF THE OMC1 IMAGE AT 1.1MM WAVELENGTH

  • Youn, So-Young (Department of Astronomy and Space Science, Sejong University) ;
  • Kim, Sung-Eun (Department of Astronomy and Space Science, Sejong University)
  • Received : 2012.06.07
  • Accepted : 2012.08.06
  • Published : 2012.08.31

Abstract

We present a 1.1mm emission map of the OMC1 region observed with AzTEC, a new large-format array composed of 144 silicon-nitride micromesh bolometers, that was in use at the James Clerk Maxwell Telescope (JCMT). These AzTEC observations reveal dozens of cloud cores and a tail of filaments in a manner that is almost identical to the submillimeter continuum emission of the entire OMC1 region at 450 and $850{\mu}m$. We perform Fourier analysis of the image with a modified periodogram and the density power spectrum, which provides the distribution of the length scale of the structures, is determined. The expected value of the periodogram converges to the resulting power spectrum in the mean squared sense. The present analysis reveals that the power spectrum steepens at relatively smaller scales. At larger scales, the spectrum flattens and the power law becomes shallower. The power spectra of the 1.1mm emission show clear deviations from a single power law. We find that at least three components of power law might be fitted to the calculated power spectrum of the 1.1mm emission. The slope of the best fit power law, ${\gamma}{\approx}-2.7$ is similar to those values found in numerical simulations. The effect of beam size and the noise spectrum on the shape and slope of the power spectrum are also included in the present analysis. The slope of the power law changes significantly at higher spatial frequency as the beam size increases.

Keywords

References

  1. Allen, D. A., & Burton, M. G. 1993, Explosive Ejection of Matter Associated with Star Formation in the Orion Nebula, Nature, 363, 54 https://doi.org/10.1038/363054a0
  2. Austermann, J. E., Aretxaga, I., Hughes, D. H., Kang, Y., Kim, S., Lowenthal, J. D., Perera, T. A., Sanders, D. B., Scott, K. S., Scoville, N., Wilson, G. W., & Yun, M. S. 2009, AzTEC Millimetre Survey of the COSMOS Field - II. Source Count Overdensity and Correlations with Large-Scale Structure, MNRAS, 393, 1573 https://doi.org/10.1111/j.1365-2966.2008.14284.x
  3. Bally, J., Cunningham, N. J., Moeckel, M., Burton, N. G., Smith, N., Frank, A., & Nordlund, A. 2011, Explosive Outflows Powered by the Decay of Non-hierarchical Multiple Systems of Massive Stars: Orion BN/KL, ApJ, 727, 113 https://doi.org/10.1088/0004-637X/727/2/113
  4. Blitz, L., & Williams, J. P. 1997, Molecular Clouds Are Not Fractal: A Characteristic Size Scale in Taurus, ApJ, 488, L145 https://doi.org/10.1086/310941
  5. Bondi, M., Padrielli, L., Gregorini, L., Mantovani, F., Shapirovskaya, N., & Spangler, S. R. 1994, One-Year Modulation in the Flux Density Time Series of Low Frequency Variables, A&A, 287, 390
  6. Bracewell, R. N. 1986, The Fourier Transform and Its Applications (New York, McGraw-Hill), 113
  7. Beresnyak, A., Lazarian, A., & Cho, J. 2005, Density Scaling and Anisotropy in Supersonic Magnetohydrodynamic Turbulence, ApJ, 624, 93 https://doi.org/10.1086/430702
  8. Bournaud, F., Elmegreen, B. G., Teyssier, R., Block, D. L., & Puerari, I. 2010, ISM Properties in Hydrodynamic Galaxy Simulations: Turbulence Cascades, Cloud Formation, Role of Gravity and Feedback, MNRAS, 409, 1088 https://doi.org/10.1111/j.1365-2966.2010.17370.x
  9. Brunt, C. M., & Heyer, M. H. 2002, Interstellar Turbulence. II. Energy Spectra of Molecular Regions in the Outer Galaxy, ApJ, 566, 289 https://doi.org/10.1086/338032
  10. Brunt, C. M. 2010, The Density Variance - Mach Number Relation in the Taurus Molecular Cloud, A&A, 513, A67 https://doi.org/10.1051/0004-6361/200913506
  11. Burkert, A. 2006, The Turbulent Interstellar Medium, C. R. Phys., 7, 433 https://doi.org/10.1016/j.crhy.2006.05.001
  12. Combes, F., Boquien, M., Kramer, C., Xilouris, E. M., Bertoldi, F., Braine, J., Buchbender, C., Calzetti, D., Gratier, P., Israel, F., Koribalski, B., Lord, S., Quintana-Lacaci, G., Relano, M., Rollig, M., Stacey, G., Tabatabaei, F. S., Tilanus, R. P. J., van der Tak, F., van derWerf, P., & Verley, S. 2012, Dust and Gas Power Spectrum in M33 (HERM33ES), A&A, 539, 67 https://doi.org/10.1051/0004-6361/201118282
  13. Crovisier, J., & Dickey, J. M. 1983, The Spatial Power Spectrum of Galactic Neutral Hydrogen from Observations of the 21-cm Emission Line, A&A, 122, 282
  14. Desert, F.-X., Boulanger, F., & Puget, J. L. 1990, Interstellar Dust Models for Extinction and Emission, A&A, 237, 215
  15. Draine, B. T., & Lazarian, A. 1998, Electric Dipole Radiation from Spinning Dust Grains, ApJ, 508, 157 https://doi.org/10.1086/306387
  16. Elmegreen, B. G., & Falgarone, E. 1996, A Fractal Origin for the Mass Spectrum of Interstellar Clouds, ApJ, 471, 816 https://doi.org/10.1086/178009
  17. Elmegreen, B. G., Kim, S., & Staveley-Smith, L. 2001, A Fractal Analysis of HI Emission of the Large Magellanic Cloud, ApJ, 548, 749 https://doi.org/10.1086/319021
  18. Falgarone, E., Phillips, T. G., & Walker, C. K. 1991, The Edges of Molecular Clouds - Fractal Boundaries and Density Structure, ApJ, 378, 186 https://doi.org/10.1086/170419
  19. Finkbeiner, D. J., Davis, M., & Schlegel, D. 1999, Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS, ApJ, 524, 867 https://doi.org/10.1086/307852
  20. Gautier, T. N., III, Boulanger, F., Perault, M., & Puget, J. L. 1992, A Calculation of Confusion Noise due to Infrared Cirrus, AJ, 103, 1313 https://doi.org/10.1086/116144
  21. Hartmann, L. 2002, Flows, Fragmentation, and Star Formation. I. Low-Mass Stars in Taurus, ApJ, 578, 914 https://doi.org/10.1086/342657
  22. Johnstone, D., & Bally, J. 1999, JCMT/SCUBA Submillimeter Wavelength Imaging of the Integralshaped Filament in Orion, ApJ, 510, L49 https://doi.org/10.1086/311792
  23. Keisler, R., Reichardt, C. L., Aird, K. A., Benson, B. A., Bleem, L. E., Carlstrom, J. E., Chang, C. L., Cho, H.M., Crawford, T.M., Crites, A. T., de Haan, T., Dobbs, M. A., Dudley, J., George, E. M., Halverson, N. W., Holder, G. P., Holzapfel, W. L., Hoover, S., Hou, Z., Hrubes, J. D., Joy, M., Knox, L., Lee, A. T., Leitch, E. M., Lueker, M., Luong-Van, D., McMahon, J. J., Mehl, J., Meyer, S. S., Millea, M., Mohr, J. J., Montroy, T. E., Natoli, T., Padin, S., Plagge, T., Pryke, C., Ruhl, J. E., Schaffer, K. K., Shaw, L., Shirokoff, E., Spieler, H. G., Staniszewski, Z., Stark, A. A., Story, K., van Engelen, A., Vanderlinde, K., Vieira, J. D., Williamson, R., & Zahn, O. 2011, A Measurement of the Damping Tail of the Cosmic Microwave Background Power Spectrum with the South Pole Telescope, ApJ, 743, 28 https://doi.org/10.1088/0004-637X/743/1/28
  24. Kim, J., & Ryu, D. 2005, Density Power Spectrum of Compressible Hydrodynamic Turbulent Flows, ApJ, 630, 45
  25. Kim, S. 1999, PhD thesis, The Australian National University, 17
  26. Kleinmann, D. E., & Low, F. J. 1967, Discovery of an Infrared Nebula in Orion, ApJ, 149, L1 https://doi.org/10.1086/180039
  27. Kritsuk, A. G., & Norman, M. L. 2004, Scaling Relations for Turbulence in the Multiphase Interstellar Medium, ApJ, 601, L55 https://doi.org/10.1086/381737
  28. Lee, J.-K., & Burton, M. G. 2000, An Infrared Proper Motion Study of the Orion Bullets, MNRAS, 315, 11 https://doi.org/10.1046/j.1365-8711.2000.03345.x
  29. Lis, D. C., Serabyn, E., Keene, J., Dowell, C. D., Benford, D. J., Phillips, T. G., Hunter, T. P., & Wang, N. 1998, 350 Micron Continuum Imaging of the Orion A Molecular Cloud with the Submillimeter High Angular Resolution Camera, ApJ, 509, 299 https://doi.org/10.1086/306500
  30. Mac Low, M.-M. 2004, Turbulence in the Interstellar Medium, Ap&SS, 289, 323 https://doi.org/10.1023/B:ASTR.0000014961.72318.7c
  31. McKee, C. F., & Ostriker, E. C. 2007, Theory of Star Formation, ARA&A, 45, 565 https://doi.org/10.1146/annurev.astro.45.051806.110602
  32. Mann, R. K., & Williams, J. P. 2010, A Submillimeter Array Survey of Protoplanetary Disks in the Orion Nebula Cluster, ApJ, 725, 430 https://doi.org/10.1088/0004-637X/725/1/430
  33. Menten, K. M., & Reid, M. J. 1995, What is Powering the Orion Kleinmann-Low Infrared Nebula, ApJ, 445, L157 https://doi.org/10.1086/187913
  34. Mookerjea, B., Ghosh, S. K., Rengarajan, T. N., Tandon, S. N., & Verma, R. P. 2000, Distribution of Cold Dust in Orion A and B, AJ, 120, 1954 https://doi.org/10.1086/301554
  35. Nyman, L. -A, Lerner, M., Nielbock, M., Anciaux, M., Brooks, K., Chini, R., Albrecht, M., Lemke, R., Kreysa, E., Zylka, R., Johansson, L. E. B., Bronfman, L., Kontinen, S., Linz, H., & Stecklum, B. 2001, SIMBA Explores the Southern Sky, Messenger, 106, 40
  36. O'Dell, C. R. 2001, New Proplyds, Outflows, Shocks, and a Reflection Nebula in M43 and the Outer Parts of the Orion Nebula, AJ, 122, 2662 https://doi.org/10.1086/323720
  37. Padoan, P., Jimenez, R., Juvela, M., & Nordlund, - A. 2004, The Average Magnetic Field Strength in Molecular Clouds: New Evidence of Super-Alfvenic Turbulence, ApJ, 604, L49 https://doi.org/10.1086/383308
  38. Perera, T. A., Chapin, E. L., Austermann, J. E., Scott, K. S., Wilson, G. W., Halpern, M., Pope, A., Scott, D., Yun, M. S., Lowenthal, J. D., Morrison, G., Aretxaga, I., Bock, J. J., Coppin, K., Crowe, M., Frey, L., Hughes, D. H., Kang, Y., Kim, S., & Mauskopf, P. D. 2008, An AzTEC 1.1mm survey of the GOODS-N field - I. Maps, catalogue and source statistics, MNRAS, 391, 1227 https://doi.org/10.1111/j.1365-2966.2008.13902.x
  39. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical Recepies in C (Cambridge: Cambridge University Press), 500-558
  40. Roy, N., Peedikakkandy, L., & Chengalur, J. N. 2008, Turbulence Measurements from HI Absorption Spectra, MNRAS, 387, 18 https://doi.org/10.1111/j.1745-3933.2008.00473.x
  41. Sault, R. J., Teuben, P. J., Wright, M. C. H. 1995, in PASPC 77, ed. R. Shaw, H. Payne, & J. Hayes, Astronomical Data Analysis Software and Systems IV, 433
  42. Scalo, J., & Elmegreen, B. G. 2004, Interstellar Turbulence II: Implications and Effects, ARA&A, 42, 275 https://doi.org/10.1146/annurev.astro.42.120403.143327
  43. Schmid-Burgk, J., Guesten, R., Mauersberger, R., Schulz, A., & Wilson, T. L. 1990, A Highly Collimated Outflow in the Core of OMC-1, ApJ, 362, L25 https://doi.org/10.1086/185839
  44. Scott, K. S., Austermann, J. E., Perera, T. A., Wilson, G. W., Aretxaga, I., Bock, J. J., Hughes, D. H., Kang, Y., Kim, S., Mauskopf, P. D., Sanders, D. B., Scoville, N., & Yun, M. S. 2008, AzTEC Millimetre Survey of the COSMOS Field - I. Data Reduction and Source Catalogue, MNRAS, 385, 2225 https://doi.org/10.1111/j.1365-2966.2008.12989.x
  45. Shaw, J. R., & Lewis, A. 2012, Constraining Primordial Magnetism, Phys. Rev. D., 86, 11
  46. Stepnik, B., Abergel, A., Bernard, J.-P., Boulanger, F., Cambresy, L., Giard, M., Jones, A. P., Lagache, G., Lamarre, J.-M., Meny, C., Pajot, F., Le Peintre, F., Ristorcelli, I., Serra, G., & Torre, J.-P. 2003, Evolution of Dust Properties in an Interstellar Filament, A&A, 398, 551 https://doi.org/10.1051/0004-6361:20021309
  47. Vazquez-Semadeni, E., Ballesteros-Paredes, J., & Klessen, R. 2003, The Origin of Molecular Cloud Turbulence and its Role on Determining the Star Formation Efficiency, ASPC, 287, 81
  48. Williams, J. P., Blitz, L., & McKee, C. F. 2000, The Structure and Evolution of Molecular Clouds: from Clumps to Cores to the IMF, in Protostars and Planets IV (Tucson: University of Arizona Press; eds Mannings, V., Boss, A. P., Russell, S. S.), 97
  49. Wilson, G.W., Austermann, J. E., Perera, T. A., Scott, K. S., Ade, P. A. R., Bock, J. J., Glenn, J., Golwala, S. R., Kim, S., Kang, Y., Lydon, D., Mauskopf, P. D., Predmore, C. R., Roberts, C. M., Souccar, K., & Yun, M. S. 2008, The AzTEC mm-Wavelength Camera, MNRAS, 386, 807 https://doi.org/10.1111/j.1365-2966.2008.12980.x
  50. Wiseman, J. J., & Ho, P. T. P. 1996, Heated Gaseous Streamers and Star Formation in the Orion Molecular Cloud, Nature, 382, 139 https://doi.org/10.1038/382139a0
  51. Wiseman, J. J., & Ho, P. T. P. 1998, Large-Scale Structure, Kinematics, and Heating of the Orion Ridge. I. VLA NH 3 (1,1) and (2,2) Mosaics, ApJ, 502, 676 https://doi.org/10.1086/305930
  52. Zapata, L. A., Schmid-Burgk, J., & Menten, K. M. 2011, Orion KL: the Hot Core That is Not a "Hot Core", A&A, 529, 24 https://doi.org/10.1051/0004-6361/201014423