DOI QR코드

DOI QR Code

Human milk oligosaccharides: the novel modulator of intestinal microbiota

  • Jeong, Kyung-Hun (Department of Food Nutrition, Chungnam National University) ;
  • Nguyen, Vi (Department of Pharmacology and Toxicology, University of California) ;
  • Kim, Jae-Han (Department of Food Nutrition, Chungnam National University)
  • Received : 2012.08.08
  • Published : 2012.08.31

Abstract

Human milk, which nourishes the early infants, is a source of bioactive components for the infant growth, development and commensal formulation as well. Human milk oligosaccharide is a group of complex and diverse glycans that is apparently not absorbed in human gastrointestinal tract. Although most mammalian milk contains oligosaccharides, oligosaccharides in human milk exhibit unique features in terms of their types, amounts, sizes, and functionalities. In addition to the prevention of infectious bacteria and the development of early immune system, human milk oligosaccharides are able to facilitate the healthy intestinal microbiota. Bifidobacterial intestinal microbiota appears to be established by the unilateral interaction between milk oligosaccharides, human intestinal activity and commensals. Digestibility, membrane transportation and catabolic activity by bacteria and intestinal epithelial cells, all of which are linked to the structural of human milk oligosaccharides, are crucial in determining intestinal microbiota.

Keywords

References

  1. Methe, B. A., Nelson, K. E., Pop, M., Creasy, H. H., Giglio, M. G., Huttenhower, C., Gevers, D., Petrosino, J. F., Abubucker, S., Badger, J. H., Chinwalla, A. T., Earl, A. M., FitzGerald, M. G., Fulton, R. S., Hallsworth-Pepin, K., Lobos, E. A., Madupu, R., Magrini, V., Martin, J. C., Mitreva, M., Muzny, D. M., Sodergren, E. J., Versalovic, J., Wollam, A. M., Worley, K. C., Wortman, J. R., Young, S. K., Zeng, Q., Aagaard, K. M., Abolude, O. O., Allen-Vercoe, E., Alm, E. J., Alvarado, L., Andersen, G. L., Anderson, S., Appelbaum, E., Arachchi, H. M., Armitage, G., Arze, C. A., Ayvaz, T., Baker, C. C., Begg, L., Belachew, T., Bhonagiri, V., Bihan, M., Blaser, M. J., Bloom, T., Bonazzi, V. R., Brooks, P., Buck, G., Buhay, C. J., Busam, D. A., Campbell, J. L., Canon, S. R., Cantarel, B. L., Chain, P. S., Chen, I. M. A., Chen, L., Chhibba, S., Chu, K., Ciulla, D. M., Clemente, J. C., Clifton, S. W., Conlan, S., Crabtree, J., Cutting, M. A., Davidovics, N. J., Davis, C. C., DeSantis, T. Z., Deal, C., Delehaunty, K. D., Dewhisrst, F. E., Deych, E., Ding, Y., Dooling, D. J., Dugan, S. P., Dunne, W. M., Durkin, A. S., Edgar, R. C., Erlich, R. L., Farmer, C. N., Farrell, R. M., Faust, K., Feldgarden, M., Felix, V. M., Fisher, S., Fodor, A. A., Forney, L., Foster, L., Di Francesco, V., Friedman, J., Friedrich, D. C., Fronick, C. C., Fulton, L. L., Gao, H., Garcia, N., Giannoukos, G., Giblin, C., Giovanni, M. Y., Goldberg, J. M., Goll, J., Gonzalez, A., Griggs, A., Gujja, S., Haas, B. J., Hamilton, H. A., Harris, E. L., Hepburn, T. A., Herter, B., Hoffmann, D. E., Holder, M. E., Howarth, C., Huang, K. H., Huse, S. M., Izard, J., Jansson, J. K., Jiang, H. Y., Jordan, C., Joshi, V., Katancik, J., Keitel, W., Kelley, S. T., Kells, C., Kinder-Haake, S., King, N. B., Knight, R., Knights, D., Kong, H. H., Koren, O., Koren, S., Kota, K. C., Kovar, C. L., Kyrpides, N. C., La Rosa, P. S., Lee, S. L., Lemon, K. P., Lennon, N., Lewis, C. M., Lewis, L., Ley, R. E., Li, K., Liolios, K., Liu, B., Liu, Y., Lo, C. C., Lozupone, C. A., Lunsford, R. D., Madden, T., Mahurkar, A. A., Mannon, P. J., Mardis, E. R., Markowitz, V. M., Mavrommatis, K., McCorrison, J. M., McDonald, D., McEwen, J., McGuire, A. L., McInnes, P., Mehta, T., Mihindukulasuriya, K. A., Miller, J. R., Minx, P. J., Newsham, I., Nusbaum, C., O'Laughlin, M., Orvis, J., Pagani, I., Palaniappan, K., Patel, S. M., Pearson, M., Peterson, J., Podar, M., Pohl, C., Pollard, K. S., Priest, M. E., Proctor, L. M., Qin, X., Raes, J., Ravel, J., Reid, J. G., Rho, M., Rhodes, R., Riehle, K. P., Rivera, M. C., Rodriguez-Mueller, B., Rogers, Y. H., Ross, M. C., Russ, C., Sanka, R. K., Sankar, P., Sathirapongsasuti, J. F., Schloss, J. A., Schloss, P. D., Schmidt, T. M., Scholz, M., Schriml, L., Schubert, A. M., Segata, N., Segre, J. A., Shannon, W. D., Sharp, R. R., Sharpton, T. J., Shenoy, N., Sheth, N. U., Simone, G. A., Singh, I., Smillie, C. S., Sobel, J. D., Sommer, D. D., Spicer, P., Sutton, G. G., Sykes, S. M., Tabbaa, D. G., Thiagarajan, M., Tomlinson, C. M., Torralba, M., Treangen, T. J., Truty, R. M., Vishnivetskaya, T. A., Walker, J., Wang, L., Wang, Z., Ward, D. V., Warren, W., Watson, M. A., Wellington, C., Wetterstrand, K. A., White, J. R., Wilczek-Boney, K., Wu, Y. Q., Wylie, K. M., Wylie, T., Yandava, C., Ye, L., Ye, Y., Yooseph, S., Youmans, B. P., Zhang, L., Zhou, Y. J., Zhu, Y. M., Zoloth, L., Zucker, J. D., Birren, B. W., Gibbs, R. A., Highlander, S. K., Weinstock, G. M., Wilson, R. K., White, O. and Consortiu, H. M. P. (2012) A framework for human microbiome research. Nature 486, 215-221. https://doi.org/10.1038/nature11209
  2. Gordon, J. I. (2012) Honor thy gut symbionts redux. Science 336, 1251-1253. https://doi.org/10.1126/science.1224686
  3. Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. and Gordon, J. I. (2005) Host-bacterial mutualism in the human intestine. Science 307, 1915-1920. https://doi.org/10.1126/science.1104816
  4. Daniels, M. C. and Adair, L. S. (2005) Breast-feeding influences cognitive development in Filipino children. J. Nutr. 135, 2589-2595. https://doi.org/10.1093/jn/135.11.2589
  5. German, J. B., Dillard, C. J. and Ward, R. E. (2002) Bioactive components in milk. Curr. Opin. Clin. Nutr. 5, 653-658. https://doi.org/10.1097/00075197-200211000-00007
  6. Harmsen, H. J., Wildeboer-Veloo, A. C., Raangs, G. C., Wagendorp, A. A., Klijn, N., Bindels, J. G. and Welling, G. W. (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30, 61-67. https://doi.org/10.1097/00005176-200001000-00019
  7. Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R. N., Anokhin, A. P., Heath, A. C., Warner, B., Reeder, J., Kuczynski, J., Caporaso, J. G., Lozupone, C. A., Lauber, C., Clemente, J. C., Knights, D., Knight, R. and Gordon, J. I. (2012) Human gut microbiome viewed across age and geography. Nature 486, 222-227.
  8. Mahowald, M. A., Rey, F. E., Seedorf, H., Turnbaugh, P. J., Fulton, R. S., Wollam, A., Shah, N., Wang, C. Y., Magrini, V., Wilson, R. K., Cantarel, B. L., Coutinho, P. M., Henrissat, B., Crock, L. W., Russell, A., Verberkmoes, N. C., Hettich, R. L. and Gordon, J. I. (2009) Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc. Natl. Acad. Sci. U.S.A. 106, 5859-5864. https://doi.org/10.1073/pnas.0901529106
  9. Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., Chinwalla, A. T., Creasy, H. H., Earl, A. M., FitzGerald, M. G., Fulton, R. S., Giglio, M. G., Hallsworth-Pepin, K., Lobos, E. A., Madupu, R., Magrini, V., Martin, J. C., Mitreva, M., Muzny, D. M., Sodergren, E. J., Versalovic, J., Wollam, A. M., Worley, K. C., Wortman, J. R., Young, S. K., Zeng, Q. D., Aagaard, K. M., Abolude, O. O., Allen-Vercoe, E., Alm, E. J., Alvarado, L., Andersen, G. L., Anderson, S., Appelbaum, E., Arachchi, H. M., Armitage, G., Arze, C. A., Ayvaz, T., Baker, C. C., Begg, L., Belachew, T., Bhonagiri, V., Bihan, M., Blaser, M. J., Bloom, T., Bonazzi, V., Brooks, J. P., Buck, G. A., Buhay, C. J., Busam, D. A., Campbell, J. L., Canon, S. R., Cantarel, B. L., Chain, P. S. G., Chen, I. M. A., Chen, L., Chhibba, S., Chu, K., Ciulla, D. M., Clemente, J. C., Clifton, S. W., Conlan, S., Crabtree, J., Cutting, M. A., Davidovics, N. J., Davis, C. C., DeSantis, T. Z., Deal, C., Delehaunty, K. D., Dewhirst, F. E., Deych, E., Ding, Y., Dooling, D. J., Dugan, S. P., Dunne, W. M., Durkin, A. S., Edgar, R. C., Erlich, R. L., Farmer, C. N., Farrell, R. M., Faust, K., Feldgarden, M., Felix, V. M., Fisher, S., Fodor, A. A., Forney, L. J., Foster, L., Di Francesco, V., Friedman, J., Friedrich, D. C., Fronick, C. C., Fulton, L. L., Gao, H. Y., Garcia, N., Giannoukos, G., Giblin, C., Giovanni, M. Y., Goldberg, J. M., Goll, J., Gonzalez, A., Griggs, A., Gujja, S., Haake, S. K., Haas, B. J., Hamilton, H. A., Harris, E. L., Hepburn, T. A., Herter, B., Hoffmann, D. E., Holder, M. E., Howarth, C., Huang, K. H., Huse, S. M., Izard, J., Jansson, J. K., Jiang, H. Y., Jordan, C., Joshi, V., Katancik, J. A., Keitel, W. A., Kelley, S. T., Kells, C., King, N. B., Knights, D., Kong, H. D. H., Koren, O., Koren, S., Kota, K. C., Kovar, C. L., Kyrpides, N. C., La Rosa, P. S., Lee, S. L., Lemon, K. P., Lennon, N., Lewis, C. M., Lewis, L., Ley, R. E., Li, K., Liolios, K., Liu, B., Liu, Y., Lo, C. C., Lozupone, C. A., Lunsford, R. D., Madden, T., Mahurkar, A. A., Mannon, P. J., Mardis, E. R., Markowitz, V. M., Mavromatis, K., McCorrison, J. M., McDonald, D., McEwen, J., McGuire, A. L., McInnes, P., Mehta, T., Mihindukulasuriya, K. A., Miller, J. R., Minx, P. J., Newsham, I., Nusbaum, C., O'Laughlin, M., Orvis, J., Pagani, I., Palaniappan, K., Patel, S. M., Pearson, M., Peterson, J., Podar, M., Pohl, C., Pollard, K. S., Pop, M., Priest, M. E., Proctor, L. M., Qin, X., Raes, J., Ravel, J., Reid, J. G., Rho, M., Rhodes, R., Riehle, K. P., Rivera, M. C., Rodriguez-Mueller, B., Rogers, Y. H., Ross, M. C., Russ, C., Sanka, R. K., Sankar, P., Sathirapongsasuti, J. F., Schloss, J. A., Schloss, P. D., Schmidt, T. M., Scholz, M., Schriml, L., Schubert, A. M., Segata, N., Segre, J. A., Shannon, W. D., Sharp, R. R., Sharpton, T. J., Shenoy, N., Sheth, N. U., Simone, G. A., Singh, I., Smillie, C. S., Sobel, J. D., Sommer, D. D., Spicer, P., Sutton, G. G., Sykes, S. M., Tabbaa, D. G., Thiagarajan, M., Tomlinson, C. M., Torralba, M., Treangen, T. J., Truty, R. M., Vishnivetskaya, T. A., Walker, J., Wang, L., Wang, Z. Y., Ward, D. V., Warren, W., Watson, M. A., Wellington, C., Wetterstrand, K. A., White, J. R., Wilczek-Boney, K., Wu, Y. Q., Wylie, K. M., Wylie, T., Yandava, C., Ye, L., Ye, Y. Z., Yooseph, S., Youmans, B. P., Zhang, L., Zhou, Y. J., Zhu, Y. M., Zoloth, L., Zucker, J. D., Birren, B. W., Gibbs, R. A., Highlander, S. K., Methe, B. A., Nelson, K. E., Petrosino, J. F., Weinstock, G. M., Wilson, R. K., White, O. and Consortiu, H. M. P. (2012) Structure, function and diversity of the healthy human microbiome. Nature 486, 207-214. https://doi.org/10.1038/nature11234
  10. Muegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., Gonzalez, A., Fontana, L., Henrissat, B., Knight, R. and Gordon, J. I. (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970-974. https://doi.org/10.1126/science.1198719
  11. Wu, T. C. and Chen, P. H. (2009) Health consequences of nutrition in childhood and early infancy. Pediatr. Neonatol. 50, 135-142. https://doi.org/10.1016/S1875-9572(09)60051-6
  12. Schack-Nielsen, L. and Michaelsen, K. E. (2007) Advances in our understanding of the biology of human milk and its effects on the offspring. J. Nutr. 137, 503-510. https://doi.org/10.1093/jn/137.2.503S
  13. Newburg, D. S. (2005) Innate immunity and human milk. J. Nutr. 135, 1308-1312.
  14. Newburg, D. S. (2009) Neonatal protection by an innate immune system of human milk consisting of oligosaccharides and glycans. J. Anim. Sci. 87, 26-34. https://doi.org/10.2527/jas.2008-1347
  15. Morrow, A. L., Ruiz-Palacios, G. M., Jiang, X. and Newburg, D. S. (2005) Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J. Nutr. 135, 1304-1307. https://doi.org/10.1093/jn/135.5.1304
  16. Newburg, D. S., Ruiz-Palacios, G. M. and Morrow, A. L. (2005) Human milk glycans protect infants against enteric pathogens. Annu. Rev. Nutr. 25, 37-58. https://doi.org/10.1146/annurev.nutr.25.050304.092553
  17. Yolken, R. H., Peterson, J. A., Vonderfecht, S. L., Fouts, E. T., Midthun, K. and Newburg, D. S. (1992) Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis. J. Clin. Invest. 90, 1984-1991. https://doi.org/10.1172/JCI116078
  18. Carlson, S. E. (1985) N-acetylneuraminic acid concentrations in human milk oligosaccharides and glycoproteins during lactation. Am. J. Clin. Nutr. 41, 720-726. https://doi.org/10.1093/ajcn/41.4.720
  19. Chaturvedi, P., Warren, C. D., RuizPalacios, G. M., Pickering, L. K. and Newburg, D. S. (1997) Milk oligosaccharide profiles by reversed-phase HPLC of their perbenzoylated derivatives. Anal. Biochem. 251, 89-97. https://doi.org/10.1006/abio.1997.2250
  20. Ninonuevo, M. R., Park, Y., Yin, H. F., Zhang, J. H., Ward, R. E., Clowers, B. H., German, J. B., Freeman, S. L., Killeen, K., Grimm, R. and Lebrilla, C. B. (2006) A strategy for annotating the human milk glycome. J. Agr. Food Chem. 54, 7471-7480. https://doi.org/10.1021/jf0615810
  21. Ward, R. E., Ninonuevo, M., Mills, D. A., Lebrilla, C. B. and German, J. B. (2006) In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl. Environ. Microbiol. 72, 4497-4499. https://doi.org/10.1128/AEM.02515-05
  22. LoCascio, R. G., Ninonuevo, M. R., Freeman, S. L., Sela, D. A., Grimm, R., Lebrilla, C. B., Mills, D. A. and German, J. B. (2007) Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. J. Agr. Food Chem. 55, 8914-8919. https://doi.org/10.1021/jf0710480
  23. Coppa, G. V., Gabrielli, O., Pierani, P., Catassi, C., Carlucci, A. and Giorgi, P. L. (1993) Changes in carbohydrate- composition in human milk over 4 months of lactation. Pediatrics 91, 637-641.
  24. Kuntz, S., Rudloff, S. and Kunz, C. (2008) Oligosaccharides from human milk influence growth-related characteristics of intestinally transformed and non-transformed intestinal cells. Br. J. Nutr. 99, 462-471.
  25. Boehm, G. and Moro, G. (2008) Structural and functional aspects of prebiotics used in infant nutrition. J. Nutr. 138, 1818S-1828S. https://doi.org/10.1093/jn/138.9.1818S
  26. Kunz, C. and Rudloff, S. (2008) Potential anti-inflammatory and anti-infectious effects of human milk oligosaccharides. Adv. Exp. Med. Biol. 606, 455-465. https://doi.org/10.1007/978-0-387-74087-4_18
  27. Martín-Sosa, S., Martín, M.-J. and Hueso, P. (2002) The sialylated fraction of milk oligosaccharides is partially responsible for binding to enterotoxigenic and uropathogenic Escherichia coli human strains. J. Nutr. 132, 3067-3072. https://doi.org/10.1093/jn/131.10.3067
  28. Newburg, D. S. (1999) Human milk glycoconjugates that inhibit pathogens. Curr. Med. Chem. 6, 117-127.
  29. Ruiz-Palacios, G. M., Cervantes, L. E., Ramos, P., Chavez- Munguia, B. and Newburg, D. S. (2003) Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 278, 14112-14120. https://doi.org/10.1074/jbc.M207744200
  30. Zivkovic, A. M., German, J. B., Lebrilla, C. B. and Mills, D. A. (2011) Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc. Natl. Acad. Sci. U.S.A. 108, 4653-4658. https://doi.org/10.1073/pnas.1000083107
  31. Charlwood, J., Tolson, D., Dwek, M. and Camilleri, P. (1999) A detailed analysis of neutral and acidic carbohydrates in human milk. Anal. Biochem. 273, 261-277. https://doi.org/10.1006/abio.1999.4232
  32. Nakhla, T., Fu, D. T., Zopf, D., Brodsky, N. L. and Hurt, H. (1999) Neutral oligosaccharide content of preterm human milk. Brit. J. Nutr. 82, 361-367. https://doi.org/10.1017/S0007114599001609
  33. Kunz, C., Rudloff, S., Baier, W., Klein, N. and Strobel, S. (2000) Oligosaccharides in human milk: Structural, functional, and metabolic aspects. Annu. Rev. Nutr. 20, 699-722. https://doi.org/10.1146/annurev.nutr.20.1.699
  34. Hong, P., Ninonuevo, M. R., Lee, B., Lebrilla, C. and Bode, L. (2009) Human milk oligosaccharides reduce HIV-1-gp120 binding to dendritic cell-specific ICAM3- grabbing non-integrin (DC-SIGN). Br. J. Nutr. 101, 482-486.
  35. Bode, L., Kunz, C., Muhly-Reinholz, M., Mayer, K., Seeger, W. and Rudloff, S. (2004) Inhibition of monocyte, lymphocyte, and neutrophil adhesion to endothelial cells by human milk oligosaccharides. Thromb. Haemost. 92, 1402-1410.
  36. Schumacher, G., Bendas, G., Stahl, B. and Beermann, C. (2006) Human milk oligosaccharides affect P-selectin binding capacities: In vitro investigation. Nutrition 22, 620-627. https://doi.org/10.1016/j.nut.2005.12.009
  37. Vos, A. P., M'Rabet, L., Stahl, B., Boehm, G. and Garssen, J. (2007) Immune-modulatory effects and potential working mechanisms of orally applied nondigestible carbohydrates. Crit. Rev. Immunol. 27, 97-140. https://doi.org/10.1615/CritRevImmunol.v27.i2.10
  38. Bode, L., Rudloff, S., Kunz, C., Strobel, S. and Klein, N. (2004) Human milk oligosaccharides reduce platelet-neutrophil complex formation leading to a decrease in neutrophil beta 2 integrin expression. J. Leukoc. Biol. 76, 820-826. https://doi.org/10.1189/jlb.0304198
  39. Lasky, L. A. (1995) Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu. Rev. Biochem. 64, 113-139. https://doi.org/10.1146/annurev.bi.64.070195.000553
  40. McEver, R. P. (1994) Role of selectins in leukocyte adhesion to platelets and endothelium. Ann. NY. Acad. Sci. 714, 185-189. https://doi.org/10.1111/j.1749-6632.1994.tb12043.x
  41. Moro, E. (1900) Morphologische und bakteriologische untersuchungen über die Darmbakterien des Sauglings : Die Bakterien-flora des normalen Frauenmilchstuhls. Jahrbuch. Kinderh. 61, 686-734.
  42. LoCascio, R. G., Ninonuevo, M. R., Kronewitter, S. R., Freeman, S. L., German, J. B., Lebrilla, C. B. and Mills, D. A. (2009) A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides. Microb. Biotechnol. 2, 333-342. https://doi.org/10.1111/j.1751-7915.2008.00072.x
  43. Marcobal, A., Barboza, M., Froehlich, J. W., Block, D. E., German, J. B., Lebrilla, C. B. and Mills, D. A. (2010) Consumption of human milk oligosaccharides by gut-related microbes. J. Agr. Food Chem. 58, 5334-5340. https://doi.org/10.1021/jf9044205
  44. Sela, D. A., Li, Y. H., Lerno, L., Wu, S. A., Marcobal, A. M., German, J. B., Chen, X., Lebrilla, C. B. and Mills, D. A. (2011) An Infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides. J. Biol. Chem. 286, 11909-11918. https://doi.org/10.1074/jbc.M110.193359
  45. Ward, R. E., Ninonuevo, M., Mills, D. A., Lebrilla, C. B. and German, J. B. (2007) In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Mol. Nutr. Food Res. 51, 1398-1405. https://doi.org/10.1002/mnfr.200700150
  46. Groschwitz, K. R., Ahrens, R., Osterfeld, H., Gurish, M. F., Han, X., Abrink, M., Finkelman, F. D., Pejler, G. and Hogan, S. P. (2009) Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/ Mcpt4-dependent mechanism. Proc. Natl. Acad. Sci. U.S.A. 106, 22381-22386. https://doi.org/10.1073/pnas.0906372106
  47. Sela, D. A. and Mills, D. A. (2010) Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends. Microbiol. 18, 298-307. https://doi.org/10.1016/j.tim.2010.03.008
  48. Gnoth, M. J., Rudloff, S., Kunz, C. and Kinne, R. K. H. (2002) Studies on the intestinal transport of human milk oligosaccharides (HMO) using Caco-2 cells. Food Res. Int. 35, 145-149. https://doi.org/10.1016/S0963-9969(01)00176-4
  49. Gnoth, M. J., Kunz, C., Kinne-Saffran, E. and Rudloff, S. (2000) Human milk oligosaccharides are minimally digested in vitro. J. Nutr. 130, 3014-3020. https://doi.org/10.1093/jn/130.12.3014
  50. Engfer, M. B., Stahl, B., Finke, B., Sawatzki, G. and Daniel, H. (2000) Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am. J. Clin. Nutr. 71, 1589-1596.
  51. Obermeier, S., Rudloff, S., Pohlentz, G., Lentze, M. J. and Kunz, C. (1999) Secretion of C-13-labelled oligosaccharides into human milk and infant's urine after an oral [C-13]galactose load. Isot. Environ. Healt. S. 35, 119-125. https://doi.org/10.1080/10256019908234084
  52. Kunz, C., Rudloff, S., Hintelmann, A., Pohlentz, G. and Egge, H. (1996) High-pH anion-exchange chromatography with pulsed amperometric detection and molar response factors of human milk oligosaccharides. J. Chromatogr. B. 685, 211-221. https://doi.org/10.1016/S0378-4347(96)00181-8
  53. Finke, B., Mank, M., Daniel, H. and Stahl, B. (2000) Offline coupling of low-pressure anion-exchange chromatography with MALDI-MS to determine the elution order of human milk oligosaccharides. Anal. Biochem. 284, 256-265. https://doi.org/10.1006/abio.2000.4680
  54. Ninonuevo, M. R., Ward, R. E., LoCascio, R. G., German, J. B., Freeman, S. L., Barboza, M., Mills, D. A. and Lebrilla, C. B. (2007) Methods for the quantitation of human milk oligosaccharides in bacterial fermentation by mass spectrometry. Anal. Biochem. 361, 15-23. https://doi.org/10.1016/j.ab.2006.11.010
  55. Wu, S. A., Tao, N. N., German, J. B., Grimm, R. and Lebrilla, C. B. (2010) Development of an annotated library of neutral human milk oligosaccharides. J. Proteome. Res. 9, 4138-4151. https://doi.org/10.1021/pr100362f
  56. Tao, N. A., Wu, S. A., Kim, J., An, H. J., Hinde, K., Power, M. L., Gagneux, P., German, J. B. and Lebrilla, C. B. (2011) Evolutionary glycomics: characterization of milk oligosaccharides in primates. J. Proteome. Res. 10, 1548-1557. https://doi.org/10.1021/pr1009367
  57. Wu, S. A., Grimm, R., German, J. B. and Lebrilla, C. B. (2011) Annotation and structural analysis of sialylated human milk oligosaccharides. J. Proteome. Res. 10, 856-868. https://doi.org/10.1021/pr101006u
  58. Coppa, G. V., Gabrielli, O., Pierani, P., Catassi, C., Carlucci, A. and Giorgi, P. L. (1993) Changes in carbohydrate composition in human milk over 4 months of lactation. Pediatrics 91, 637-641.
  59. Chaturvedi, P., Warren, C. D., Altaye, M., Morrow, A. L., Ruiz-Palacios, G., Pickering, L. K. and Newburg, D. S. (2001) Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology 11, 365-372. https://doi.org/10.1093/glycob/11.5.365
  60. Sumiyoshi, W., Urashima, T., Nakamura, T., Arai, I., Saito, T., Tsumura, N., Wang, B., Brand-Miller, J., Watanabe, Y. and Kimura, K. (2003) Determination of each neutral oligosaccharide in the milk of Japanese women during the course of lactation. Brit. J. Nutr. 89, 61-69. https://doi.org/10.1079/BJN2002746
  61. Ninonuevo, M. R., Perkins, P. D., Francis, J., Lamotte, L. A., LoCascio, R. G., Freeman, S. L., Mills, D. A., German, J. B., Grimm, R. and Lebrilla, C. B. (2008) Daily variations in oligosaccharides of human milk determined by microfluidic chips and mass spectrometry. J. Agr. Food Chem. 56, 618-626. https://doi.org/10.1021/jf071972u
  62. Tao, N., Depeters, E. J., Freeman, S., German, J. B., Grimm, R. and Lebrilla, C. B. (2008) Bovine milk glycome. J. Dairy. Sci. 91, 3768-3778. https://doi.org/10.3168/jds.2008-1305
  63. Tao, N., Ochonicky, K. L., German, J. B., Donovan, S. M. and Lebrilla, C. B. (2010) Structural determination and daily variations of porcine milk oligosaccharides. J. Agr. Food Chem. 58, 4653-4659. https://doi.org/10.1021/jf100398u
  64. Martinez-Ferez, A., Rudloff, S., Guadix, A., Henkel, C. A., Pohlentz, G., Boza, J. J., Guadix, E. M. and Kunz, C. (2006) Goats' milk as a natural source of lactose-derived oligosaccharides: Isolation by membrane technology. Int. Dairy J. 16, 173-181. https://doi.org/10.1016/j.idairyj.2005.02.003
  65. Nakamura, T. and Urashima, T. (2004) The milk oligosaccharides of domestic farm animals. Trends. Glycosci. Glyc. 16, 135-142. https://doi.org/10.4052/tigg.16.135
  66. Urashima, T., Kawai, Y., Nakamura, T., Arai, I., Saito, T., Namiki, M., Yamaoka, K., Kawahawa, K. and Messer, M. (1999) Chemical characterisation of six oligosaccharides in a sample of colostrum of the brown capuchin, Cebus apella (Cebidae : Primates). Comp. Biochem. Phys. C. 124, 295-300. https://doi.org/10.1016/S0305-0491(99)00120-0
  67. Taufik, E., Fukuda, K., Senda, A., Saito, T., Williams, C., Tilden, C., Eisert, R., Oftedal, O. and Urashima, T. (2012) Structural characterization of neutral and acidic oligosaccharides in the milks of strepsirrhine primates: greater galago, aye-aye, Coquerel's sifaka and mongoose lemur. Glycoconjugate J. 29, 119-134. https://doi.org/10.1007/s10719-012-9370-9
  68. Bode, L. (2009) Human milk oligosaccharides: prebiotics and beyond. Nutr. Rev. 67(Suppl 2), S183-191. https://doi.org/10.1111/j.1753-4887.2009.00239.x
  69. Chichlowski, M., German, J. B., Lebrilla, C. B. and Mills, D. A. (2011) The influence of milk oligosaccharides on microbiota of infants: opportunities for formulas. Annu. Rev. Food Sci. Tech. 2, 331-351. https://doi.org/10.1146/annurev-food-022510-133743
  70. LoCascio, R. G., Niñonuevo, M. R., Kronewitter, S. R., Freeman, S. L., German, J. B., Lebrilla, C. B. and Mills, D. A. (2009) A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides. Microb. Biotechnol. 2, 333-342. https://doi.org/10.1111/j.1751-7915.2008.00072.x
  71. Asakuma, S., Hatakeyama, E., Urashima, T., Yoshida, E., Katayama, T., Yamamoto, K., Kumagai, H., Ashida, H., Hirose, J. and Kitaoka, M. (2011) Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J. Biol. Chem. 286, 34583-34592. https://doi.org/10.1074/jbc.M111.248138
  72. Marcobal, A. and Sonnenburg, J. L. (2012) Human milk oligosaccharide consumption by intestinal microbiota. Clin. Microbiol. Infec. 18, 12-15. https://doi.org/10.1111/j.1469-0691.2012.03863.x
  73. Turroni, F., Bottacini, F., Foroni, E., Mulder, I., Kim, J. H., Zomer, A., Sanchez, B., Bidossi, A., Ferrarini, A., Giubellini, V., Delledonne, M., Henrissat, B., Coutinho, P., Oggioni, M., Fitzgerald, G. F., Mills, D., Margolles, A., Kelly, D., van Sinderen, D. and Ventura, M. (2010) Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc. Natl. Acad. Sci. U.S.A. 107, 19514-19519. https://doi.org/10.1073/pnas.1011100107
  74. Sela, D. A., Chapman, J., Adeuya, A., Kim, J. H., Chen, F., Whitehead, T. R., Lapidus, A., Rokhsar, D. S., Lebrilla, C. B., German, J. B., Price, N. P., Richardson, P. M. and Mills, D. A. (2008) The genome sequence of Bifidobacterium longum subsp infantis reveals adaptations for milk utilization within the infant microbiome. Proc. Natl. Acad. Sci. U.S.A. 105, 18964-18969. https://doi.org/10.1073/pnas.0809584105
  75. Fabich, A. J., Jones, S. A., Chowdhury, F. Z., Cernosek, A., Anderson, A., Smalley, D., McHargue, J. W., Hightower, G. A., Smith, J. T., Autieri, S. M., Leatham, M. P., Lins, J. J., Allen, R. L., Laux, D. C., Cohen, P. S. and Conway, T. (2008) Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect. Immun. 76, 1143-1152. https://doi.org/10.1128/IAI.01386-07
  76. Degnan, B. A. and Macfarlane, G. T. (1995) Carbohydrate utilization patterns and substrate preferences in Bacteroides thetaiotaomicron. Anaerobe 1, 25-33. https://doi.org/10.1016/S1075-9964(95)80392-0
  77. Leongmorgenthaler, P., Zwahlen, M. C. and Hottinger, H. (1991) Lactose metabolism in Lactobacillus bulgaricusanalysis of the primary structure and expression of the genes involved. J. Bacteriol. 173, 1951-1957. https://doi.org/10.1128/jb.173.6.1951-1957.1991
  78. Hunt, D. E., Gevers, D., Vahora, N. M. and Polz, M. F. (2008) Conservation of the chitin utilization pathway in the Vibrionaceae. Appl. Environ. Microb. 74, 44-51. https://doi.org/10.1128/AEM.01412-07
  79. Alice, A. F., Perez-Martinez, G. and Sanchez-Rivas, C. (2003) Phosphoenolpyruvate phosphotransferase system and N-acetylglucosamine metabolism in Bacillus sphaericus. Microbiol-Sgm 149, 1687-1698. https://doi.org/10.1099/mic.0.26231-0
  80. Yamada-Okabe, T., Sakamori, Y., Mio, T. and Yamada- Okabe, H. (2001) Identification and characterization of the genes for N-acetylglucosaminekinase and N-acetylglucosamine- phosphate deacetylase in the pathogenic fungus Candida albicans. Eur. J. Biochem. 268, 2498-2505. https://doi.org/10.1046/j.1432-1327.2001.02135.x
  81. Lauret, R., MorelDeville, F., Berthier, F., Champomier- Verges, M., Postma, P., Ehrlich, S. D. and Zagorec, M. (1996) Carbohydrate utilization in Lactobacillus sake. Appl. Environ. Microb. 62, 1922-1927.
  82. Peter, M. G. (1995) Applications and environmental aspects of chitin and chitosan. J. Macromol. Sci. Pure. A32, 629-640. https://doi.org/10.1080/10601329508010276
  83. Homer, K. A., Patel, R. and Beighton, D. (1993) Effects of N-acetylglucosamine on carbohydrate fermentation by Streptococcus mutans NCTC10449 and Streptococcus sobrinus SL-1. Infect. Immun. 61, 295-302.
  84. Bhattacharya, D., Nagpure, A. and Gupta, R. K. (2007) Bacterial chitinases: Properties and potential. Crit. Rev. Biotechnol. 27, 21-28. https://doi.org/10.1080/07388550601168223
  85. Homer, K. A., Patel, R. and Beighton, D. (1993) Effects of N-Acetylglucosamine on Carbohydrate Fermentation by Streptococcus-Mutans Nctc-10449 and Streptococcus- Sobrinus Sl-1. Infect. Immun. 61, 295-302.
  86. Li, Y. H. and Chen, X. (2012) Sialic acid metabolism and sialyltransferases: natural functions and applications. Appl. Microbiol. Biot. 94, 887-905. https://doi.org/10.1007/s00253-012-4040-1
  87. Vimr, E. R., Kalivoda, K. A., Deszo, E. L. and Steenbergen, S. M. (2004) Diversity of microbial sialic acid metabolism. Microbiol. Mol. Biol. R 68, 132-153.
  88. Reuter, G. and Gabius, H. J. (1996) Sialic acids structure - analysis - metabolism - occurrence - recognition. Biol. Chem. H-S. 377, 325-342.
  89. Sela, D. A., Garrido, D., Lerno, L., Wu, S. A., Tan, K. M., Eom, H. J., Joachimiak, A., Lebrilla, C. B. and Mills, D. A. (2012) Bifidobacterium longum subsp infantis ATCC 15697 alpha-fucosidases are active on fucosylated human milk oligosaccharides. Appl. Environ. Microb. 78, 795-803. https://doi.org/10.1128/AEM.06762-11
  90. Amutha, B., Khire, J. M. and Khan, M. I. (1999) Active site characterization of the exo-N-acetyl-beta-D-glucosaminidase from thermotolerant Bacillus sp NCIM 5120: involvement of tryptophan, histidine and carboxylate residues in catalytic activity. Bba-Gen Subjects 1427, 121-132. https://doi.org/10.1016/S0304-4165(99)00009-4
  91. Clarke, V. A., Platt, N. and Butters, T. D. (1995) Cloning and expression of the beta-N-acetylglucosaminidase gene from Streptococcus pneumoniae - generation of truncated enzymes with modified aglycon specificity. J. Biol. Chem. 270, 8805-8814. https://doi.org/10.1074/jbc.270.15.8805
  92. Kiyohara, M., Nakatomi, T., Kurihara, S., Fushinobu, S., Suzuki, H., Tanaka, T., Shoda, S., Kitaoka, M., Katayama, T., Yamamoto, K. and Ashida, H. (2012) alpha-N-Acetylgalactosaminidase from infant-associated bifidobacteria belonging to novel glycoside hydrolase family 129 is implicated in alternative mucin degradation pathway. J. Biol. Chem. 287, 693-700. https://doi.org/10.1074/jbc.M111.277384
  93. Wada, J., Ando, T., Kiyohara, M., Ashida, H., Kitaoka, M., Yamaguchi, M., Kumagai, H., Katayama, T. and Yamamoto, K. (2008) Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl. Environ. Microb. 74, 3996-4004. https://doi.org/10.1128/AEM.00149-08
  94. Marcobal, A., Barboza, M., Sonnenburg, E. D., Pudlo, N., Martens, E. C., Desai, P., Lebrilla, C. B., Weimer, B. C., Mills, D. A., German, J. B. and Sonnenburg, J. L. (2011) Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host. Microbe. 10, 507-514. https://doi.org/10.1016/j.chom.2011.10.007
  95. Garrido, D., Kim, J. H., German, J. B., Raybould, H. E. and Mills, D. A. (2011) Oligosaccharide binding poteins from Bifidobacterium longum subsp infantis reveal a preference for host glycans. PLoS ONE 6, e17315. https://doi.org/10.1371/journal.pone.0017315

Cited by

  1. Reduced duration of breastfeeding is associated with a higher risk of multiple sclerosis in both Italian and Norwegian adult males: the EnvIMS study vol.262, pp.5, 2015, https://doi.org/10.1007/s00415-015-7704-9
  2. Enzymatic preparation and structural determination of oligosaccharides derived from sea cucumber (Acaudina molpadioides) fucoidan vol.139, pp.1-4, 2013, https://doi.org/10.1016/j.foodchem.2013.01.055
  3. Position of the Academy of Nutrition and Dietetics: Health Implications of Dietary Fiber vol.115, pp.11, 2015, https://doi.org/10.1016/j.jand.2015.09.003
  4. Use of canonical discriminant analysis to study signatures of selection in cattle vol.48, pp.1, 2016, https://doi.org/10.1186/s12711-016-0236-7
  5. Host Defense Proteins in Breast Milk and Neonatal Yeast Colonization vol.32, pp.1, 2016, https://doi.org/10.1177/0890334415592402
  6. Breast Milk and Gut Microbiota in African Mothers and Infants from an Area of High HIV Prevalence vol.8, pp.11, 2013, https://doi.org/10.1371/journal.pone.0080299
  7. Phytochemicals in Human Milk and Their Potential Antioxidative Protection vol.7, pp.2, 2018, https://doi.org/10.3390/antiox7020032