DOI QR코드

DOI QR Code

Synthesis of thermoelectric Mg3Sb2 by melting and mechanical alloying

용융법과 기계적 합금화에 의한 열전재료 Mg3Sb2의 제조

  • Kim, In-Ki (Department of Materials Science and Engineering, Hanseo University)
  • 김인기 (한서대학교 신소재공학과)
  • Received : 2012.08.06
  • Accepted : 2012.08.10
  • Published : 2012.08.31

Abstract

A single phase $Mg_3Sb_2$ alloy was synthesized by melting the mixture of Mg and Sb metal powders at 1173 K. The figure of merit of the $Mg_3Sb_2$ prepared by melting method increased with temperature and showed a value of $2.39{\times}10^{-2}$ at 593 K. When the $Mg_3Sb_2$ powders were milled at high speed in a planetary ball mill for 12~48 h, Zintle phase ($Mg_3Sb_2$) was maintained as a main phase, but its crystallinity became deteriorated and elemental Sb phase appeared. Sb phase free $Mg_3Sb_2$ could be obtained by the mechanical alloying of high speed ball milling for 24 h using elemental Mg and Sb powder mixtures.

Mg와 Sb 분말을 사용하여 1173 K에서 결정성이 좋은 단일상의 $Mg_3Sb_2$ 합금을 제조하였다. 이 합금의 열전성능지수 zT는 온도상승에 따라 크게 증가하였고 593 K에서 $2.39{\times}10^{-2}$의 값을 나타내었다. 얻어진 $Mg_3Sb_2$ 합금을 planetary ball mill에서 12~48시간 볼밀링할 경우 주 결정상 $Mg_3Sb_2$는 유지가 되었으나 결정성이 나빠졌고 금속원소 Sb상이 나타났다. Mg와 Sb를 섞고 24시간 볼밀링에 의한 합금화 방법으로 합성할 경우 원소금속 Sb가 나타나지 않은 $Mg_3Sb_2$ 결정상을 얻을 수 있었다.

Keywords

References

  1. W.C. Hall, "CRC Handbook of Thermoelectrics" (edited by D.M. Rowe, CRC press, Boca Ranton, 1995) p. 503.
  2. G. Chen, G. Dresselhaus, M.S. Dresselhaus, J.P. Fleurial and T. Caillat, "Recent developments in thermoelectric materials", Int. Mater. Rev. 48 (2003) 45. https://doi.org/10.1179/095066003225010182
  3. K.H. Kim, J.S. Park and J.P. Ahn, "Joining and properties of electrode for CoSb3 thermoelectric materials prepared by a spark plasma sintering method", Journal of the Korean Crystal Growth and Crystal Technology 20(1) (2010) 30. https://doi.org/10.6111/JKCGCT.2010.20.1.030
  4. S.B. Riffat and X. Ma, "Thermoelectrics: a review of present and potential applications", Appl. Therm. Eng. 23 (2003) 913. https://doi.org/10.1016/S1359-4311(03)00012-7
  5. C. Wood, "Materials for thermoelectric energy conversion", Rep. Prog. Phys. 51 (1988) 459. https://doi.org/10.1088/0034-4885/51/4/001
  6. M. Martinez-Ripoll, A. Haase and G. Brauer, "Structural Crystallography and Crystal Chemistry", Acta Cryst. B 30 (1974) 2006. https://doi.org/10.1107/S0567740874006285
  7. T. Kajikawa, N. Kimura and T. Yokoyama, "Thermoelectric properties of intermetallic compounds: $Mg_{3}Bi_{2}$ and $Mg_{3}Sb_{2}$ for medium temperature range thermoelectric elements", Proc. the 22nd Int. Conf. on Thermoelectrics (2003) 305.
  8. C.L. Condron, S.M. Kauzlarich, F. Gascoin and G.J. Snyder, "Thermoelectric properties and microstructure of $Mg_{3}Sb_{2}$", J. Solid State Chem. 179 (2006) 2253.
  9. C. Suryanarayana, E. Ivanov and V.V. Boldyrev, "The science and technology of mechanical alloying", Mater. Sci. Eng. A 304-306 (2001) 151. https://doi.org/10.1016/S0921-5093(00)01465-9
  10. F. Ahmadpour, T. Kolodiazhnyi and Y. Mozharivsky, "Structural and physical properties of $Mg_{3-x}Zn_{x}Sb_{2}$ (x = 0-1.34)", J. Solid State Chem. 180 (2007) 2427.
  11. H.X. Xin, X.Y. Qin, X.G. Zhu, J. Zhang and M.G. Kong, "Fabrication of nanocrystalline $Mg_{3}X_{2}$ (X = Bi, Sb) with supersaturated solid solubility by mechanical alloying", Mater. Sci. Eng. B 128 (2006) 192. https://doi.org/10.1016/j.mseb.2005.12.001
  12. C.H. Lee, "Fabrication and characterization of Mn-Si thermoelectric materials by mechanical alloying", Journal of the Korean Crystal Growth and Crystal Technology 21(6) (2011) 123.

Cited by

  1. compound prepared by mechanical alloying vol.23, pp.3, 2013, https://doi.org/10.6111/JKCGCT.2013.23.3.135