DOI QR코드

DOI QR Code

A Comparative Study on the Chemicostructural Characteristics of Ecdysteroids

Ecdysteroid 화합물들의 화학구조 특성에 대한 비교연구

  • Hwang, Gab-Soo (Department of Environmental Engineering, Kunsan National University)
  • 황갑수 (군산대학교 환경공학과)
  • Received : 2012.04.29
  • Accepted : 2012.08.09
  • Published : 2012.08.31

Abstract

Objectives: This study was conducted in order to investigate the specific correlation between physicochemical properties and bioactivity in ecdysteroids found in living organisms. Methods: The examined steroidal compounds were classified into three groups according to their relevance to ecdysone activity. Each compound molecule was completely drawn to automatically calculate its physicochemical parameters and docked against 20-hydroxyecdysone to calculate the total distance. Electronic charge distribution was also observed for each molecule. All procedures were conducted using a computational chemistry program. Results: Ecdysone agonists showed different ranges of parameter values, such as log P, hydrophilic-lipophilic balance (HLB), solubility parameter (SP), hydrophilic surface (HPS), hydrogen bond (HB) and Kappa 2, when compared with antagonists and steroids without ecdysone activity. They also showed a similar electronic charge distribution that is significantly different from the electron charge distribution of antagonists and steroids without ecdysone activity. The total distance values of agonists, estimated by docking them with 20-hydroxyecdysone, were relatively small but showed no correlation with binding affinity with receptor ligand. Conclusions: These results suggest that physicochemical properties such as steric and electronic effects, hydrophobicity and hydrogen bonding may operate in combination to determine the binding activity of ecdysteroids to the receptor protein.

Keywords

References

  1. Lafont R. The endocrinology of invertebrates. Ecotoxicology. 2000; 9: 41-57. https://doi.org/10.1023/A:1008912127592
  2. Nakagawa Y, Vincent C, Henrich VC. Arthropod nuclear receptors and their role in molting. FEBS Journal. 2009; 276(21): 6128-6157. https://doi.org/10.1111/j.1742-4658.2009.07347.x
  3. Subramoniam T. Crustacean ecdysteroids in reproduction and embryogenesis. Comparative Biochemistry and Physiology C. 2000; 125: 135-156.
  4. Feldlaufer MF, Herbert Jr EW, Svoboda JA, Thompson MJ. Biosynthesis of makisterone A and 20-hydroxyecdysone from labeled sterols by the honey bee. Apis Mellifera. Archives of Insect Biochemistry and Physiology. 1986; 3: 415-421. https://doi.org/10.1002/arch.940030502
  5. Feldlaufer MF, Svoboda JA, Aldrich JR, Lusby WR. The neutral sterols of Megalotomus quinquespinosus (say) (hemiptera: Alydidae) and identification of makisterone a as the major free ecdysteroid. Archives of Insect Biochemistry and Physiology. 1986; 3: 423-430. https://doi.org/10.1002/arch.940030503
  6. Hiramoto M, Fujimoto Y, Kakinuma K, Ikekawa N, Ohnishi E. Ecdysteroid conjugates in the ovaries of the silkworm, Bombix mori: 3-phosphates of 2,22- dideoxy-20-hydroxyecdysone and of bombycosterol. Experientia. 1988; 44(7): 623-625. https://doi.org/10.1007/BF01953319
  7. Rharrabe K, Sayah F, RaFont R. Dietary effects of four phytoecdysteroids on growth and development of the Indian meal moth. Plodia interpunctella. J Insect Sci. 2010; 10(13).
  8. Okuzumi K, Hara N, Uekusa H, Fujimoto Y. Structure elucidation of cyasterone stereoisomers isolated from Cyathula officinalis. Org Biomol Chem. 2005; 3(7): 1227-1232. https://doi.org/10.1039/b416868b
  9. Oetken M, Bachmann J, Schulte-Oehlmann U, Oehlmann J. Evidence for endocrine disruption in invertebrates. International Review of Cytology. 2004; 236: 1-44. https://doi.org/10.1016/S0074-7696(04)36001-8
  10. Clubbs RL, Brooks BW. Daphnia magna responses to a vertebrate estrogen receptor agonist an antagonist: A multigenerational study. Ecotoxicol Environ Saf. 2007; 67: 385-398. https://doi.org/10.1016/j.ecoenv.2007.01.009
  11. Zou E, Fingerman M. Effects of estrogenic xenobiotics on molting of the water flea, Daphnia magna. Ecotoxicol Environ Saf. 1997; 38: 281-285. https://doi.org/10.1006/eesa.1997.1589
  12. Mizuhashi S, Ikegaya Y, Matsuki N. Pharmacological property of tributyltin in vivo and in vitro. Environ Toxicol Pharmacol. 2000; 8: 205-212. https://doi.org/10.1016/S1382-6689(00)00042-9
  13. Oehlmann J, Schulte-Oehlmann U, Tillmann M, Markert B. Effects of endocrine disruptors on prosobranch snails (Mollusca: Gastropoda) in the laboratory. I. Bisphenol A and octylphenol as xenoestrogens. Ecotoxicology. 2000; 9: 383-397. https://doi.org/10.1023/A:1008972518019
  14. Planella R, Martnez-Guitartea JL, Morcillo G. The endocrine disruptor bisphenol A increases the expression of HSP70 and ecdysone receptor genes in the aquatic larvae of Chironomus riparius. Chemosphere. 2008; 71(10): 1870-1876. https://doi.org/10.1016/j.chemosphere.2008.01.033
  15. Mu X, Rider CV, Hwang GS, Hoy H, LeBlanc GA. Covert signal disruption: antiecdysteroidal activity of bisphenol A involves cross talk between signaling pathways. Environ Toxicol Chem. 2005; 24(1): 146-152. https://doi.org/10.1897/04-063R.1
  16. Hwang GS. Embryotoxicity of bisphenol A in Daphnia magna. Korean J Environ Toxicol. 2006; 21(1): 81-86.
  17. Mu X, LeBlanc GA. Environmental antiecdysteroids alter embryo development in the Crustacean Daphnia magna. J Exp Zool. 2002; 292: 287-292. https://doi.org/10.1002/jez.10020
  18. Kast-Hutcheson K, Rider CV, LeBlanc GA. The fungicide propiconazole interferes with embryonic development of the Crustacean Daphnia magna. Environ Toxicol Chem. 2001; 20(3): 502-509. https://doi.org/10.1897/1551-5028(2001)020<0502:TFPIWE>2.0.CO;2
  19. Kwak IS, Lee WC. Effects of the ecdysteroid agonist tebufenozide on freshwater chironomids. Korean Journal of Limnology. 2004; 37(1): 96-101.
  20. Park BR, Kim YG. Exogenous JH and ecdysteroid applications alter initiation of polydnaviral replication in an endoparasitoid wasp, Cotesia plutellae( Braconidae: Hymenoptera). Biochem Mol Biol. Reports. 2011; 44(6): 393-398.
  21. Kang KD, Lee EJ, Kamita SG, Maeda S, Seong SI. Ecdysteroid stimulates virus transmission in larvae infected with Bombyx mori nucleopolyhedrovirus. J Biochem Mol Biol. 2000; 33(1): 63-68.
  22. Talbot WS, Swyryd EA, Hogness DS. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell. 1993; 73: 1323-1337. https://doi.org/10.1016/0092-8674(93)90359-X
  23. Nakagawa Y, Shimizu B, Oikawa N, Akamatsu M, Nishimura K, Kurihara N, Ueno T, Fujita T. Threedimensional quantitative structure-activity analysis of steroidal and dibenzoylhydrazine-type ecdysone agonists. ACS Symposium Series. 1995; 606: 288- 301.
  24. Roussel PG, Sik V, Turner NJ, Dinan LN. Synthesis and biological activity of side chain analogs of ecdysone and 20-hydroxyecdysone. J Chem Soc Perkin Trans. 1997; 1: 2237-2246.
  25. Harmatha J, Dinan L. Biological activity of natural and synthetic ecdysteroids in the BII bioassay. Arch Insect Bioch Phys. 1997; 35: 219-225. https://doi.org/10.1002/(SICI)1520-6327(1997)35:1/2<219::AID-ARCH20>3.0.CO;2-D
  26. Mikitani K. A new nonsteroidal chemical class of ligand for the ecdysteroid receptor 3, 5-di-tert-butyl- 4-hydroxy-N-isobutyl-benzamide shows apparent insect molting hormone activities at molecular and cellular levels. Biochem. Biophys. Res. Commun. 1996; 227: 427-432. https://doi.org/10.1006/bbrc.1996.1524
  27. Oikawa N, Nakagawa Y, Nishimura K, Kurihara N, Ueno T, Fujita T. Quantitative structure-activity analysis of larvicidal 1-(substitute benzoyl)-2benzoyl-1- tert-butylhydrazines against Chilo suppressalis. Pesticide Science. 1994; 41: 139-148. https://doi.org/10.1002/ps.2780410210
  28. Elbrecht A, Chen Y, Jurgens T, Hensens OD, Zink DL, Beck HT, Balick MJ, Borris R. 8-O-Acetylharpagide is a nonsteroidal ecdysteroid agonist. Insect Biochem Mol Biol. 1996; 26: 519-523. https://doi.org/10.1016/0965-1748(95)00103-4
  29. Cottam DM, Milner MJ. The effect of several ecdysteroids and ecdysteroid agonists on two Drosophila imaginal disk cell lines. Cell Molecular Life Scince. 1997; 53: 600-603. https://doi.org/10.1007/s000180050078
  30. Spindler-Barth M, Quack S, Rauch P, Spindler KD. Biological effects of muristone A and turkesterone on the epithelial cell line from Chironomus tentans (D: Chironomidae) and correlation with binding affinity to the ecdysteroid receptor. Eur J Entomol. 1997; 94: 161-166.
  31. Cherbas P, Cherbas L, Lee SS, Nakanishi K. 26- [125I]iodoponasterone A is a potent ecdysone and a sensitive radioligand for ecdysone receptors. Proceedings of the National Academy of Sciences of the United States of America. 1988; 85: 2096-2100. https://doi.org/10.1073/pnas.85.7.2096
  32. Odinokov VN, Galyautdinov IV, Nedopekin DV, Khalilov LM, Shashkov AS, Kachala VV, Dinan L, Lafont R. Phytoecdysteroids from the juice of Serratula coronata L. (Asteraceae). Insect Biochem Mol Biol. 2002; 32(2): 161-165. https://doi.org/10.1016/S0965-1748(01)00106-0
  33. Arai H, Watanabe B, Nakagawa, Y, Miyagawa H. Synthesis of ponasterone A derivatives with various steroid skeleton moieties and evaluation of their binding to the ecdysone receptor of Kc cells. Steroids. 2008; 73: 1452-1464. https://doi.org/10.1016/j.steroids.2008.08.005
  34. Wurtz JM, Guillot B, Fagart J, Moras D, Tietjen K, Schindler M. A new model for 20-hydroxyecdysone and dibenzoylhydrazine binding: A homology modeling and docking approach. Protein Science. 2000; 9: 1073-1084. https://doi.org/10.1110/ps.9.6.1073
  35. Harada T, Nakagawa Y, Akamatsu M, Miyagawa H. Evaluation of hydrogen bonds of ecdysteroids in the ligand-receptor interactions using a protein modeling system. Bioorganic & Medical Chemistry. 2009; 17: 5868-5873. https://doi.org/10.1016/j.bmc.2009.07.011