DOI QR코드

DOI QR Code

Application and Improvement of Complex Frequency Shifted Perfectly Matched Layers for Elastic Wave Modeling in the Frequency-domain

주파수영역 탄성파모델링에 대한 CFS-PML경계조건의 적용 및 개선

  • Son, Min-Kyung (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Chang-Soo (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 손민경 (한국지질자원연구원 지진연구센터) ;
  • 조창수 (한국지질자원연구원 지진연구센터)
  • Received : 2012.05.17
  • Accepted : 2012.07.23
  • Published : 2012.08.31

Abstract

Absorbing boundary conditions are used to mitigate undesired reflections that can arise at the model's truncation boundaries. We apply a complex frequency shifted perfectly matched layer (CFS-PML) to elastic wave modeling in the frequency domain. Modeling results show that the performance of our implementation is superior to other absorbing boundaries. We consider the coefficients of CFS-PML to be optimal when the kinetic energy becomes to the minimum, and propose the modified CFS-PML that has the CFS-PML coefficient ${\alpha}_{max}$ defined as a function of frequency. Results with CFS-PML and modified CFS-PML are significantly improved compared with those of the classical PML technique suffering from large spurious reflections at grazing incidence.

탄성파의 수치 모델링은 유한한 경계에서 발생하는 인공적인 반사파의 제거를 위한 경계조건을 필요로 한다. 이 연구에서는 주파수영역의 탄성파 수치 모델링에 CFS-PML (Complex Frequency Shifted-Perfectly Matched Layer) 경계조건을 적용하였다. 수치모델링 검증을 위해 Lamb's Problem의 해석해와 수치모델링 결과를 비교한 결과 일치하였다. 모형 내의 운동에너지, 최대크기오차, 그리고 스펙트럼오차를 통하여 CFS-PML경계조건이 기존의 흡수경계조건들 보다 유한경계에서 발생한 인공적인 반사파를 효과적으로 제거할 수 있음을 확인하였다. CFS-PML경계조건의 변수 ${\kappa}_{max}$${\alpha}_{max}$의 최적값은 운동에너지를 이용하여 산정할 수 있었다. 또한, 주파수에 따른 함수로 정의된 ${\alpha}_{max}$를 변수로 갖는 변형된 CFS-PML경계조건을 제안하여 기존 PML경계조건, CFS-PML경계조건, 그리고 변형된 CFS-PML경계조건의 성능을 운동에너지, 최대크기오차, 스펙트럼 오차로 비교하였다. 기존 PML경계조건에서 나타난 스쳐가는 입사각에 대한 반사파 문제가 CFS-PML경계조건, 그리고 변형된 CFS-PML경계조건에서는 개선되었다.

Keywords

References

  1. Bao, H., Bielak, J., Ghattas, O., Kallivokas, L. F., O'Hallaron, D. R., Shewchuk, J. R., and Xu, J., 1998, Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers, Computer Methods in Applied Mechanics and Engineering, 152, 85-102. https://doi.org/10.1016/S0045-7825(97)00183-7
  2. Berenger, J., 1994, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, 114, 185-200. https://doi.org/10.1006/jcph.1994.1159
  3. Berenger, J., 2002, Application of the CFS PML to the absorption of evanescent waves in waveguides, IEEE Microwave and Wireless Components Letters, 12, 218-220. https://doi.org/10.1109/LMWC.2002.1010000
  4. Berg, P., If, F., Nielsen, P., and Skovgaard, O., 1994, Analytical reference solutions, in Helbig, K., Ed., Modeling the Earth for Oil Exploration, Pergamon Press, 421-427.
  5. Cerjan, C., Kosloff, D., Ksloff, R., and Reshef, M., 1985, A nonreflecting boundary condition ofr discrete acoustic and elastic wave equation, Geophysics, 50, 705-708. https://doi.org/10.1190/1.1441945
  6. Chew, W., and Liu, Q., 1996, Perfeclty matched layers for elastodynamics: A new absorbing boundary condition, Journal of Computational Acoustics, 4, 341-359. https://doi.org/10.1142/S0218396X96000118
  7. Cho, C. S., and Lee, H. I., 2009, Application of convolutional perfectly matched layer method to numerical elastic modeling using rotated staggered grid, Jigu-Mulli-wa-Mulli-Tamsa, 12, 183-191.
  8. Clayton, R., and Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave equations, Bulletin of the Seismological Society of America, 67, 1529-1540.
  9. Collino, F., and Monk, P., 1998, Optimizing the perfectly matched layer, Computer Methods in Applied Mechanics and Engineering, 164, 157-171. https://doi.org/10.1016/S0045-7825(98)00052-8
  10. Collino, F., and Tsogka, C., 2001, Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, Geophysics, 66, 294-307. https://doi.org/10.1190/1.1444908
  11. Correia, D. and Jin, J.-M., 2005, On the Development of a Higher-Order PML, IEEE Trans. Antennas Propag., 53, 4157- 4163. https://doi.org/10.1109/TAP.2005.859901
  12. Drossaert, F. H., and Giannopoulos, A., 2007a, A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves, Geophysics, 72, T9-T17. https://doi.org/10.1190/1.2424888
  13. Drossaert, F. H., and Giannopoulos, A., 2007b, Complex frequency shifted convolution PML for FDTD modelling of elastic waves, Wave Motion, 44, 593-604. https://doi.org/10.1016/j.wavemoti.2007.03.003
  14. Higdon, R., 1991, Absorbing boundary conditions for elastic waves, Geophysics, 56, 231-241. https://doi.org/10.1190/1.1443035
  15. Komatitsch, D., and Martin, R., 2007, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation, Geophysics, 72, SM155-SM167. https://doi.org/10.1190/1.2757586
  16. Komatitsch, D., and Tromp, J., 1999, Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophysical Journal International, 139, 806-822. https://doi.org/10.1046/j.1365-246x.1999.00967.x
  17. Pratt, R. G., and Worthington, M. H., 1990, Inverse theory applied to multi-source cross-hole tomography. Part 1: Acoustic wave-equation method, Geophysical Prospecting, 38, 287- 310. https://doi.org/10.1111/j.1365-2478.1990.tb01846.x
  18. Roden, J. A., and Gedney, S. D., 2000, Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media, Microwave and Optical Technology Letters, 27, 334-339. https://doi.org/10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
  19. Shin, C., 1995, Sponge boundary condition for frequency-domain modeling, Geophysics, 60, 1870-1874. https://doi.org/10.1190/1.1443918
  20. Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, 1259-1266. https://doi.org/10.1190/1.1441754
  21. Virieux, J., 1986, P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method, Geophysics, 51, 889-901. https://doi.org/10.1190/1.1442147
  22. Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics, Geophysics, 74, WCC127-WCC152. https://doi.org/10.1190/1.3237087
  23. Zhang, W., and Shen, Y., 2010, Unsplit complex frequencyshifted PML implementation using auxiliary differential equations for seismic wave modeling, Geophysics, 75, T141-T154. https://doi.org/10.1190/1.3463431