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Abstract: Categorization is an important human function used to process different stimuli.  It is also one of the
most important factors affecting measurement of a person's classification ability. Explicit categorization, the
representative system by which categorization ability is measured, can verbally describe the categorization rule. The
purpose of this study was to develop a prediction model for categorization ability as it relates to the classification
process of living organisms using fMRI. 

Fifty-five participants were divided into two groups: a model generation group, comprised of twenty-seven subjects,
and a model verification group, made up of twenty-eight subjects. During prediction model generation, functional
connectivity was used to analyze temporal correlations between brain activation regions. A classification ability
quotient (CQ) was calculated to identify the verbal categorization ability distribution of each subject. Additionally,
the connectivity coefficient (CC) was calculated to quantify the functional connectivity for each subject.  Hence, it
was possible to generate a prediction model through regression analysis based on participants' CQ and CC values.
The resultant categorization ability regression model predictor was statistically significant; however, researchers
proceeded to verify its predictive ability power. In order to verify the predictive power of the developed regression
model, researchers used the regression model and subjects' CC values to predict CQ values for twenty-eight subjects.
Correlation between the predicted CQ values and the observed CQ values was confirmed.

Results of this study suggested that explicit categorization ability differs at the brain network level of individuals.
Also, the finding suggested that differences in functional connectivity between individuals reflect differences in
categorization ability. Last, researchers have provided a new method for predicting an individual's categorization
ability by measuring brain activation. 
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I. Introduction

Every human classifies objects surrounding
him/her. For example, all persons recognize an
apple to be an “apple”; that is, it is not merely
seen as an apple by one individual, all others
also recognize it as an apple. All things in life
are named as a result of classification. In fact,
people construct a cognition system of objects
and concepts related to human life through
classification, which eases communication with
others. The results of classification affect one's
cognitive system construction, and as such
classification is closely linked to human
existence (Seger, 2008). Moreover, classification
is also linked closely to biology, providing basic

knowledge and information about nature
(Margulis, 1981; Mayr, 1997). Particularly, it
provides schemes for biological communication
and assists with scientific knowledge generation
(Margulis, 1981; Honey & Paxman, 1986). In the
field of science education, classification is viewed
as crucial to the understanding of complex
nature (Jiang et al., 2007; Seger, 2008). 
Most major research on classification focuses

on the understanding of classification criteria
and types of classification behavior. These types
of research highlight students' understanding of
classification criteria, illustrate the existence of
misconceptions about classification criteria, and
detail characteristics of classification behavior.
However, research has yet to provide a suitable
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measurement method of student classification
ability, which could be due to the complicatedness
of the cognitive process during classification.
Because some research has found that
classification ability is a comprehensive and
integrative cognition process that involves
various other inductive cognitions (Kwon et al.,
2003), it is indeed very difficult to measure an
individual's classification ability through
interviews, a behavior analysis and open-type
paper tests. In other words, it is problematic to
quantify various cognitive processes and their
respective results. Additionally, the quantification
of categorization triggers differences not only in
the classification process but also in the ability
to quantify classification ability (Jacob, 2004).
Humans may respond differently to an object or
event belonging to a different class or category
(Ashby & Casale, 2003); that is to say,
classification as a cognitive process is important
for humans, basically performing according to
different stimuli (Maddox et al., 2010).
Classification and categorization are similar
cognitive processes, but for the purpose of this
paper, classification includes categorization
during the cognitive process. Then, categorization
becomes the most important factor in the
measurement of classification ability. Most
recent categorization research focuses on two
different type systems known as explicit and
implicit categorization (Ashby & Maddox, 2005;
Ashby et al., 1998; Erickson & Kruschke, 1998;
Pickering, 1997). Explicit categorization is a
rule-based system tied to language function and
consciousness while implicit categorization is
related to non-consciousness processes (Ashby
et al., 1998; Filoteo et al., 2005; Schnyer et al.,
2009). It is possible to measure explicit
categorization via an interview, an open-type

paper test or a behavior test, but implicit
categorization cannot be measured through
these methods. Results of current research
suggest there is a secondary output of brain
activation during categorization. Neurological
instruments like fMRI can aid in the detection
and quantification of this brain activation during
a cognitive task (Ansari & Coch, 2006). Hence,
there is a need to develop a new measure of
assessment for categorization ability. To meet
this need, researchers developed a categorization
ability prediction model for living organisms
using fMRI. 

Ⅱ. Methods and Procedure

1. Participants 

Fifty-five healthy graduate and undergraduate
university students (29 male and 26 females;
right-handed) were recruited for fMRI image
acquisition. Participants gave informed
participation consent, and the project was
approved by the Ethics Committee of KNUE.
Participants were divided into two groups: a
model generation group comprised of twenty-
seven subjects (14 males, 13 females) and a model
verification group made up of twenty-eight
subjects (14 males, 14 females). Researchers
employed a paper task that utilized the
Classification ability Quotients (CQ) to identify
the classification ability distribution for each
participant within the two groups (Kwon et al.,
2007). The average CQ values for each group are
shown in the following Table.

2. Procedure

1) Task development for predictor generation

Table 1
CQ distribution for the model generation and model verification groups

Group Model Generation(n = 27) Model Verification(n = 28)

CQ
M(SD) M(SD)

44.99(±31.77) 25.29(±5.07)
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The categorization process of a research task
should naturally arouse the interest of each
subject (Borg & Gall, 1989). The task research
and development process regular seminar
meetings of three science education experts-
generated thirty-six tasks, each composed of
nine objects, from three organism domains:
animal, plant, and fungi. Eighteen of these tasks
were selected for use in the study based on a
calculated coincidence index of more than 90%.
The study utilized two equivalent type tasks to
generate a predictor of explicit categorization
ability. The first one is used during MR
scanning, and the other task illustrates the
explicit categorization ability distribution of each
subject via a CQ value. The eighteen selected
tasks were randomly divided into two types of
tasks, each containing 3 animal, 3 plant and 3
fungi type domains. Factor analysis was
performed to evaluate construct validity.  Also,
to facilitate task analysis, Cronbach's alpha
value and an equivalent-form reliability test
were ascertained for 20 university students
independent of this study.

2) fMRI data collection
Nine classification condition tasks: 3 animal, 3

plant, and 3 fungi, were presented during MR
scanning. A blocked design was used to acquire
BOLD signals from the whole brain region. fMRI
scans were performed on a 3.0T MRI scanner
(Forte, ISOL Technology, Korea) with a standard
head coil. An EPI sequence was used for the
functional imaging acquisition with the following
parameters: TR / TE / θ= 3000ms / 35ms / 90。,
FOV = 210mmⅹ210mm, matrix = 64ⅹ64, and
slice thickness = 5mm. Axial slices parallel to the
AC-PC line were acquired to provide a high-
resolution image of the anatomy of the whole
brain (Evans et al., 1993).

3) fMRI data analysis for predictor generation
Image preprocessing and statistical analysis

were performed with Statistical Parametric
Mapping (SPM2, Wellcome Department of

Cognitive Neurology, London, UK), which is
done in Matlab (Mathworks Inc. Sherborn, Mass,
USA). Functional images were realigned,
normalized and smoothed with an 8mm FWHM
Gaussian filter (Worsley & Friston, 1995).
Moreover, global scaling was added to remove
the drift in BOLD signals. A general linear model
was used to estimate the condition effect for
individual participants (Friston et al., 1999), and
the group effect was computed using one-
sample t-test. The Bonferroni method makes it
possible to perform multiple comparisons during
statistical analysis of EPI images, but this
method may cause type-Ⅱ errors (Loring et al.,
2002). To obtain reliable activation data and
avoid type-Ⅱerrors, a Gaussian kernel (Genovese
et al., 2002) was employed. Significance level (p)
was found to be 0.001, and the extent threshold
was not modified (k = 0). Montreal Neurology
Institute (MNI) coordinates of activation regions
during explicit categorization were converted to
Talairach coordinates (Talairach & Tournoux,
1988).
ROIs relevant to the extraction of time series

BOLD signals were selected from a prior study
on the brain network model of classification
(Byeon et al., 2009). Time course BOLD signals
were extracted from 9 ROIs: the left Superior
Parietal Louble, the right Cuneus, the right
Lingual Gyrus, the left and right Fusiform
Gyrus, the left Inferior Frontal Gyrus, the left
and right Middle Frontal Gyrus, the right
Culmen, and the left Declive, and verified for
significance using functional connectivity
(Koshino et al., 2005). The functional connection
strength among the various ROIs for each
subject was calculated through the connectivity
coefficient (CC) (Schmithorst & Holland, 2006).
To generate a prediction model for explicit
categorization ability, researchers employed
regression analysis using the CQ and CC values
obtained from each subject. 

4) Verification of the predictor
To verify the predictive power of the developed
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predictor, researchers acquired images for the
twenty-eight subjects via MR scanning. Also,
the CC values of each subject were calculated
using time-course BOLD signals. After CC value
calculation, CQ values were predicted by
entering CC values into the developed prediction
regression model. After calculating predicted CQ
values, correlation analysis between predicted
CQ and observed CQ (actual CQ) values of the
twenty-eight subjects was performed.

Ⅲ. Result 

1. Result of task analysis

For factor analysis, a KMO & Bartleet test was
used to identify suitability of eighteen tasks.
Suitability, as determined from factor analysis,
was found to be statistical significant at p < 0.05.
All tasks converged into one factor and the
factor loading value was found to be significant
with a p of more than 0.50. Therefore, each

developed task is considered suitable for use as a
measurement of explicit categorization ability.
Also, an inter-item consistency test and an
equivalent-form reliability test on the two types
of tasks revealed the reliability of each task
(Table 2). 

2. Generation of predictor by fMRI data

To generate a predictor of explicit
categorization ability, the functional network
model from a prior study on classification was
used. Statistically significant brain regions from
that study's fMRI data analysis were the left
Superior Parietal Louble, the right Cuneus, the
right Lingual Gyrus, the left and right Fusiform
Gyrus, the left Inferior Frontal Gyrus, the left
and right Middle Frontal Gyrus, the right
Culmen, and the left Declive (9 ROIs).  More
explicit representations are given in Figure 1. 
To identify difference in individual brain

networks, time series BOLD signals from the same

Table 2
Results of the Reliability Test

f-task p-task
Cronbach’s alpha (α) 0.71 0.78

Correlation coefficient (r)

* f-task: fMRI task, p-task: CQ task

0.73

Fig. 1 ROIs for extraction of time course BOLD signals
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brain regions (9 ROIs) of each subject were
extracted. Next, an individual's functional brain
network was calculated using the temporal
correlation coefficient (R) and weight (W) value
from time series BOLD signals within ROIs (Fig. 2). 
Differences in functional networks based on

temporal correlation were likely the result of
activated voxels as shown through cluster-based
analysis, which is one type of data driven
analysis (Boccalettia et al., 2006; Friston et al.,
1993). Therefore, it is possible to calculate a
connectivity coefficient (CC) value that
quantifies difference in individuals' functional
network (Schmithorst & Holland, 2006). Through
this process, researchers quantified difference in
functional networks individually and found the
average CC value within groups (n = 27) to be
3.06 (±1.52).
To generate a predictor of explicit categorization

ability based on individual CC values and CQ
values, regression analysis was carried out with
CQ and CC values (Fig. 3). The predictive power
(r2) of the generated predictor was found to be
0.21 by regression analysis and the correlation
coefficient (r) was 0.46 (p = 0.017).

3. Verification of predictor

To verify the predictor, the predictive power of
the regression model was assessed. According to
the predictor, CQ values are predicted by
entering CC values into the model as
independent variables. Therefore, researchers
predicted CQ values from the model for each of
the twenty-eight subjects. Correlations were
also verified between predicted CQ values and
observed CQ values. The result of correlation
analysis found the relation to be statistically
significant (p < 0.05) (Fig. 4).
Regression validity for neurological studies

related to prediction models of cognitive ability
regard significance to be within the 0.05 level
(Chen et al., 2007; Choi et al., 2008; Eckert et
al., 2008). The predictive power of the regression

Fig. 2 Individual Subject Difference as shown through functional connectivity

Fig. 3 prediction model of explicit categorization
ability based on fMRI data

Y : Predicted CQ
X : CC value

Y = 15.806 + 9.521X
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model developed in this study is statistically
significant, but the Pearson correlation is rather
low. However, this study statistically verified the
predictive power of the regression model through
correlation analysis between predicted values
and actual values. Therefore, it could be concluded
that the developed predictor is a suitable
prediction model for explicit categorizationability.

Ⅳ. Discussion 

Categorization ability is an important cognitive
factor and essential to the investigation of
classification ability (Harnad, 2005; Huang-
Pollock, Maddox, & Karalunas, 2001). There are
two competitive systems that explain
categorization: explicit and implicit systems.
According to the COVIS model, the separated
two systems partially overlap and guide humans
to make correct decisions. Particularly, explicit
categorization is a representative measure of
categorization ability because it can verbally
describe the used categorization rule (Ashby et
al., 1998). 
In this context, neurological studies suggest

that the explicit categorization is related to
prefrontal activation for top-down and bottom-
up type decision making. The result of this study

is similar to these suggestions because the brain
connectivity in the prefrontal region differed
according to the categorization ability of a
subject. According to the result of this study, it
could be said that explicit categorization ability
can be identified at the brain level of an
individual. Second, this study suggests that
differences in functional connectivity between
individuals reflect differences in categorization
ability. Third, having been verified with a group
of participants independent of this study,
researchers offer the developed regression model
as a predictor of explicit categorization ability
through brain network measurement. Lastly, it
could be said that prediction of explicit
categorization ability is possible by assessing
brain connectivity. 
The result of this study may explain several

mechanisms related to differences in individuals.
Also, the research method of this study led to
the development of a new measure of
assessment for cognitive ability. Certainly, this
paper was limited in subject number, yet the
result of this study can provide more objective
data about individual's explicit categorization. It,
however, cannot predict causes of categorization
ability differences among individuals. Further
studies on a different and larger scale are needed

Fig. 4 Correlation between predicted CQ and observed CQ values
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before applying the developed prediction model
beyond this study. In addition, it is necessary to
investigate causes of categorization ability
differences like categorization strategies.
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