Real Time Related Key Attack on Hummingbird-2

Kai Zhang, Lin Ding, Junzhi Li and Jie Guan
Zhengzhou Information Science and Technology Institute
Zhengzhou 450000, China
[e-mail: zhkai2010@139.com, dinglin_cipher@163.com, ljunhi@ 163.com, guanjie007@163.com]
*Corresponding author: Jie Guan

Received May 2, 2012; revised June 26, 2012; accepted July 24, 2012;
published August 30, 2012

Abstract

Hummingbird is a lightweight encryption and message authentication primitive published in RISC'09 and WLC'10. In FSE'11, Markku-Juhani O.Saarinen presented a differential divide-and-conquer method which has complexity upper bounded by 2^{64} operations and requires processing of few megabytes of chosen messages under two related nonces (IVs). The improved version, Hummingbird-2, was presented in RFIDSec 2011. Based on the idea of differential collision, this paper discovers some weaknesses of the round function WD16. Combining with the simple key loading algorithm, a related-key chosen-IV attack which can recover the full secret key is proposed. Under 15 pairs of related keys, the 128 bit initial key can be recovered, requiring 2^{27} chosen $I V$ and the computational complexity is $O\left(2^{27}\right)$. In average, the attack needs several minutes to recover the full 128 -bit secret key on a PC. The experimental result corroborates our attack. The result shows that the Hummingbird-2 cipher can't resist related key attack.

Key Words: Cryptanalysis; Hummingbird-2; related key attack; lightweight cipher;

[^0]DOI: 10.3837/tiis.2012.08.004
hybrid symmetric cipher

1. Introduction

Symmetric encryption algorithms are traditionally categorized into two types of schemes: block ciphers and stream ciphers. Stream ciphers distinguish themselves from block ciphers by the fact that they process plaintext symbols (typically bits) as soon as they arrive by applying a very simple but ever changing invertible transformation, it's based on the idea of "One Time Pad Assumption". As for block ciphers, their security are from the complexity of the encryption transformation, it's based on the theory of "Confusion and Diffusion". Nowadays, people try to combine the stream ciphers and the block ciphers together to make safer ciphers, such as CSA[12], Hummingbird family ciphers[1][2] etc.

Hummingbird-1 is a recent cryptographic algorithm proposal for RFID tags and other constrained devices. It is covered by several pending patents and is being commercially marketed by the Revere Security. Revere has invested into Hummingbird's cryptographic security assurance before its publication by contracting ISSI, a private consultancy employing some ex-NSA staff and members of U.Waterloo CACR. In FSE 2011, Markku-Juhani O. Saarinen proposed a differential divide-and-conquer method which has complexity upper bounded by 2^{64} operations and requires processing of few megabytes of chosen messages under two related nonces(IVs). In RFIDSec 2011, the improved version, Hummingbird-2, was presented. It is also an encryption and message authentication primitive that has been designed particularly for resource-constrained devices such as RFID tags, wireless sensors, smart meters and industrial controllers. In 2011, Xinxin Fan and Guang Gong proposed a side channel cube attack[14] against Hummingbird-2 which can recover the first 48 bit initial key for the data complexity of $O\left(2^{18}\right)$. Recently, using two pairs of related keys, Qi Chai and Guang Gong proposed a probabilistic attack[11]encompassing two phases, the preparation phase and the key recovery phase. In the preparation phase, the attack requires 2^{80} effort in time, aims to reach an internal state, with 0.5 success probability which satisfies particular conditions. In the key recovery phase, using the proposed differential sequence analysis it is able to recover 36 bits of the 128 -bit key. The rest 48 bits of the key can be exhaustively searched and the overall time complexity of the key recovery phase is $2^{49.63}$.

Related key cryptanalysis is first introduced by Biham and independently by

Knudsen in 1993[3][9]it is a type of chosen-key attack, in which the relationship between the keys used is known. People try to get the information of the initial key by analyzing the ciphertexts under certain related keys. Combined with differential attack, Kelsey proposed Related Key differential cryptanalysis in [8], and it is also combined with other attacks such as impossible differential attack and high order differential attack.

In the specification of Hummingbird-2, the authors referred to a related key differential characteristic, but didn't make an attack. In the present report we show that the published version of Hummingbird-2 is susceptible to a related-key chosen-IV attack that under 15 pairs of related keys, the 128 bit initial key can be recovered with the computational complexity of $O\left(2^{27}\right)$ and 2^{27} chosen $I V$ s. When compared with the attack[11] proposed by Qi Chai, to succeed with probability 1, the preparation phase of their attack requires more effort in time than the exhaustive search, while our attack works on Hummingbird-2 cipher with manageably low data complexity and time complexity, and our attack can succeed with probability of almost 1. But the related keys used in their attack model are less than ours.

This paper is organized as follows. In Section 2 we give a description of Hummingbird-2. In Section 3 we present a key observation about the initialization and encryption procedure of algorithm, then we propose an attack which recovers the full secret key, moreover we use a new strategy to improve our attack, followed by conclusion in Section 4.

2. Description of Hummingbird-2

The Hummingbird-2 cipher has a 128 -bit secret key K and a 128 -bit internal state R which is initialized using a 64 -bit Initialization Vector (i.e. $I V$). The key, registers and $I V$ are denoted as follows:

$$
\begin{aligned}
& K=\left(K_{1}, K_{2}, K_{3}, K_{4}, K_{5}, K_{6}, K_{7}, K_{8}\right) \\
& R=\left(R_{1}, R_{2}, R_{3}, R_{4}, R_{5}, R_{6}, R_{7}, R_{8}\right) \\
& I V=\left(I V_{1}, I V_{2}, I V_{3}, I V_{4}\right)
\end{aligned}
$$

Let $S(x)$ denotes the computation of four S-Boxes and $L(x)$ the linear transformation which is expressed using the left circular shift (rotation) operator ("<<<"). We may write the nonlinear function $f(x)$ and $W D 16(x, a, b, c, d)$ as

$$
\begin{aligned}
& x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \\
& S(x)=S_{1}\left(x_{0}\right)\left|S_{2}\left(x_{1}\right)\right| S_{3}\left(x_{2}\right) \mid S_{4}\left(x_{3}\right) \\
& L(x)=x \oplus(x \lll 6) \oplus(x \lll 10) \\
& f(x)=L(S(x)) \\
& W D 16(x, a, b, c, d)=f(f(f(f(x \oplus a) \oplus b) \oplus c) \oplus d)
\end{aligned}
$$

The S－Boxes S_{1}, S_{2}, S_{3} and S_{4} are given in Table 1 below．
Table 1．The S－Boxes of Hummingbird－2

x	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
$S_{1}(x)$	7	c	e	9	2	1	5	f	b	6	d	0	4	8	a	3
$S_{2}(x)$	4	a	1	6	8	f	7	c	3	0	e	d	5	9	b	2
$S_{3}(x)$	2	f	c	1	5	6	a	d	e	8	3	4	0	b	9	7
$S_{4}(x)$	f	4	5	8	9	7	2	1	a	3	0	e	6	c	d	b

（1）The Initialization Process
First of all，the initial state of the registers denoted as $R^{(0)}$ is filled with $I V$ as follows：
$R^{(0)}=\left(R_{1}^{(0)}, R_{2}^{(0)}, R_{3}^{(0)}, R_{4}^{(0)}, R_{5}^{(0)}, R_{6}^{(0)}, R_{7}^{(0)}, R_{8}^{(0)}\right)=\left(I V_{1}, I V_{2}, I V_{3}, I V_{4}, I V_{1}, I V_{2}, I V_{3}, I V_{4}\right)$
Then iterate for $i=0,1,2,3$ as follows（＂（＂represents＂addition module $2^{16 ")}$ ）：

$$
\begin{aligned}
& t_{1}=W D 16\left(R_{1}^{(i)} \square<i>, K_{1}, K_{2}, K_{3}, K_{4}\right) \\
& t_{2}=W D 16\left(R_{2}^{(i)}+t_{1}, K_{5}, K_{6}, K_{7}, K_{8}\right) \\
& t_{3}=W D 16\left(R_{3}^{(i)} \square t_{2}, K_{1}, K_{2}, K_{3}, K_{4}\right) \\
& t_{4}=W D 16\left(R_{4}^{(i)} \square t_{3}, K_{5}, K_{6}, K_{7}, K_{8}\right) \\
& R_{1}^{(i+1}=\left(R_{1}^{i}{ }^{i}+t_{4}{ }_{4}\right. \text { 火<< } \\
& R_{2}^{(i+1}=\left(R_{2}^{i} \Theta t,{ }_{1}\right. \text { 甲>> } \\
& R_{3}^{(i+1}=\left(R_{3}^{i} \Psi t_{2} \text { } 火 \ll\right. \\
& R_{4}^{(i+1}=\left(R_{4}^{i} \oplus t{ }_{3} 火 \ll\right. \\
& R_{5}^{(i+1)}=R_{5}^{(i)} \oplus R_{1}^{(i+1)} \\
& R_{6}^{(i+1)}=R_{6}^{(i)} \oplus R_{2}^{(i+1)} \\
& R_{7}^{(i+1)}=R_{7}^{(i)} \oplus R_{3}^{(i+1)} \\
& R_{8}^{(i+1)}=R_{8}^{(i)} \oplus R_{4}^{(i+1)}
\end{aligned}
$$

The initial state of registers for encrypting the first plaintext word is $R^{(4)}$ ．

（2）The Encryption Process

The encryption of the i th plaintext P_{i} to C_{i} needs four iteration of WD16 as follows：

$$
\begin{aligned}
t_{1} & =W D 16\left(R_{1}^{(i)} \boxplus P_{i}, K_{1}, K_{2}, K_{3}, K_{4}\right) \\
t_{2} & =W D 16\left(R_{2}^{(i)} \boxplus t_{1}, K_{5} \oplus R_{5}^{(i)}, K_{6} \oplus R_{6}^{(i)}, K_{7} \oplus R_{7}^{(i)}, K_{8} \oplus R_{8}^{(i)}\right) \\
t_{3} & =W D 16\left(R_{3}^{(i)} \boxplus t_{2}, K_{1} \oplus R_{5}^{(i)}, K_{2} \oplus R_{6}^{(i)}, K_{3} \oplus R_{7}^{(i)}, K_{4} \oplus R_{8}^{(i)}\right)
\end{aligned}
$$

$$
C_{i}=W D 16\left(R_{4}^{(i)} \boxplus t_{3}, K_{5}, K_{6}, K_{7}, K_{8}\right) \boxplus R_{1}^{(i)}
$$

The registers R_{1} to R_{8} are refreshed as follows:

$$
\begin{gathered}
R_{1}^{(i+1)}=R_{1}^{(i)} \boxplus t_{3} \\
R_{2}^{(i+1)}=R_{2}^{(i)} \pm t_{1} \\
R_{3}^{(i+1)}=R_{3}^{(i)} \boxplus t_{2} \\
R_{4}^{(i+1)}=R_{4}^{(i)} \oplus R_{1}^{(i)} \oplus t_{3} \oplus t_{1} \\
R_{5}^{(i+1)}=R_{5}^{(i)} \oplus\left(R_{1}^{(i)} \boxplus t_{3}\right) \\
R_{6}^{(i+1)}=R_{6}^{(i)} \oplus\left(R_{2}^{(i)} \boxplus t_{1}\right) \\
R_{7}^{(i+1)}=R_{7}^{(i)} \oplus\left(R_{3}^{(i)} \boxplus t_{2}\right) \\
R_{8}^{(i+1)}=R_{8}^{(i)} \oplus\left(R_{4}^{(i)} \boxplus R_{1}^{(i)} \boxplus t_{3} \boxplus t_{1}\right)
\end{gathered}
$$

3. Cryptanalysis of Hummingbird-2

In this section, we introduce a key recovery attack on Hummingbird-2. Here is the clue: Firstly, we introduce some differential characteristics of the four S boxes for Hummingbird-2, then some differential collision characteristics of the nonlinear function WD16 are presented. Secondly, we obtain a series of differential characteristics based on the thought of related key attack and some differential collisions occur with high probability through the initialization and the encryption process of the algorithm. Finally, we proposed a differential-related key attack on Hummingbird-2 which can recover the full key in real time.

The attack process is as follows: First of all, we use proper related keys which can induce partial differential and can be counteracted with high probability, the differentials can be limited to the inside of the nonlinear function WD16. Then we detect whether the differential pairs we built has occurred by examining the differential of the ciphertexts. If it occurs, we can use the differential cryptanalysis techniques to recover the key.

3.1 Differential Properties of S-Boxes on Hummingbird-2

First of all, we introduce some concepts of differential cryptanalysis.
Definition 1[4] A differential of a function $f: F_{2}^{n} \rightarrow F_{2}^{n}$ is a pair $(\alpha, \beta) \in F_{2}^{n} \times F_{2}^{n}$ such that $f(x+\alpha)=f(x)+\beta$ for some $x \in F_{2}^{n}$. We call α the input differential and β the output differential. The differential probability $p_{f}(\alpha \rightarrow \beta)$ of a differential (α, β) with respect to $f(x)$ is defined as

$$
p_{f}(\alpha \rightarrow \beta)=p\left\{\left(x_{1}, x_{2}\right) \in F_{2}^{n} \times F_{2}^{n}: f\left(x_{1}\right)-f\left(x_{2}\right)=\beta \mid x_{1}-x_{2}=\alpha\right\}
$$

Through analyzing the four S-Boxes of Hummingbird-2, we study the distribution of the probability of differentials, and get various differential pairs with different differential probability. As for our attack, we only use the highest differential probability which is $1 / 4$ actually for all of the four S-Boxes, so we only illustrate these differential pairs in Table 2.(In Table 2, $\alpha \rightarrow \beta$ represents the input differential and output differential respectively.)

Table 2. Highest probability differential pairs of the four S-Boxes for Hummingbird-2

S box	Highest probability differential pairs
S_{1}	$1 \rightarrow d, 2 \rightarrow 6,2 \rightarrow e, 3 \rightarrow 2,3 \rightarrow b, 5 \rightarrow e, 6 \rightarrow 8,7 \rightarrow 8,8 \rightarrow 9$, $8 \rightarrow c, 9 \rightarrow 5, b \rightarrow 1, b \rightarrow b, c \rightarrow 4, e \rightarrow 1, e \rightarrow f, f \rightarrow 4, f \rightarrow 7$
S_{2}	$1 \rightarrow 3,1 \rightarrow 7,2 \rightarrow d, 3 \rightarrow 2,3 \rightarrow e, 4 \rightarrow 5,4 \rightarrow 6,6 \rightarrow 9,7 \rightarrow 8$, $7 \rightarrow e, a \rightarrow 2, b \rightarrow 4, b \rightarrow 9, c \rightarrow 1, d \rightarrow d, e \rightarrow 4, e \rightarrow f, f \rightarrow 1$
S_{3}	$1 \rightarrow 7,1 \rightarrow d, 2 \rightarrow c, 2 \rightarrow e, 3 \rightarrow 3,4 \rightarrow 3,5 \rightarrow 4,6 \rightarrow 7,6 \rightarrow f$, $7 \rightarrow 4,8 \rightarrow 5, a \rightarrow 1, b \rightarrow f, c \rightarrow 9, d \rightarrow 8, d \rightarrow e, f \rightarrow 1, f \rightarrow 5$
S_{4}	$1 \rightarrow e, 2 \rightarrow a, 2 \rightarrow b, 3 \rightarrow 1,7 \rightarrow 1,7 \rightarrow e, 8 \rightarrow 5,8 \rightarrow f, 9 \rightarrow c$, $a \rightarrow 4, a \rightarrow f, b \rightarrow 2, c \rightarrow 3, c \rightarrow 8, e \rightarrow 2, e \rightarrow 9, f \rightarrow 7, f \rightarrow 9$

Then, let us introduce a property of these S-Boxes which will be used later when we choose the related keys to recover the initial key.

Property 1 For any one of the S-Boxes of Hummingbird-2 denoted as $S_{i}(i=1,2,3,4)$, there must exist at least one element x, which as the input of S_{i} satisfies two different differential characteristics $\alpha_{1} \rightarrow \beta_{1}, \alpha_{2} \rightarrow \beta_{2}$ at the same time, and x is the only input satisfies these two differential characteristics.

Table 3. Input sets for different differential characteristics of the four S-Boxes

S-Box	Differential Characteristic	Input Set	S-Box	Differential Characteristic	Input Set
S_{1}	$(1, d)(2,6)(3, b)$	8,9,a,b	S_{3}	$(1,7)(c, 9)(d, e)$	6,7,a,b
	$(2, e)(9,5)(b, b)$	5,7,c,e		$(1, d)(2, e)(3,3)$	0,1,2,3
	$(3,2)(c, 4)(f, 6)$	1,2,d,e		$(2, c)(4,3)(6, f)$	$9, b, d, f$
	$(5, e)(b, 1)(e, f)$	1,4,a,f		$(5,4)(a, 1)(f, 5)$	0,5,a,f
	$(6,8)(8,9)(e, 1)$	3,5,b,d		$(6,7)(b, f)(d, 8)$	3,5,8,e
	$(7,8)(8, c)(f, 4)$	0,7,8,f		$(7,4)(8,5)(f, 1)$	3,4,b,c
S_{2}	$(1,3)(2, d)(3, e)$	8,9,a,b	S_{4}	$(1, e)(e, 9)(f, 7)$	4,5,a,b
	(1,7)(6,9)(7,e)	2,3,4,5		$(2, a)(8,5)(a, f)$	0,2,8,a
	$(3,2)(d, d)(e, f)$	0,3,d,e		$(2, b)(8, f)(a, 4)$	4,6,c,e
	$(4,5)(b, 4)(f, 1)$	1,5,a,e		$(3,1)(c, 8)(f, 9)$	1,2,d,e
	$(4,6)(a, 2)(e, 4)$	2,6,8,c		$(7,1)(b, 2)(c, 3)$	3,4,8,f
	$(7,8)(b, 9)(c, 1)$	0,7,b,c		$(7, e)(9, c)(e, 2)$	0,7,9,e

As we only concern those differential characteristics which the differential probability is $1 / 4$. First of all, we list all the possible input for different differential characteristics of the four S-Boxes which the differential probability is $1 / 4$. (α, β) in Table 3 represents the differential characteristic $\alpha \rightarrow \beta$.
As for $S_{1}, x=8$ is the only element which satisfies differential characteristics $(1, d)$ and $(7,8)$, and $x=8$ is the only element for these two differential characteristics. Similarly, for $S_{1}, x=a$ is the only input satisfies differential characteristics $(1, d)$ and $(5, e) . x=c$ is the only input satisfies differential characteristics $(4,6)$ and $(7,8)$ for $S_{2}, x=0$ is the only input satisfies differential characteristics $(1, d)$ and $(5,4)$ for S_{3} and $x=4$ is the only input satisfies differential characteristics $(1, e)$ and $(2, b)$ for S_{4}. It's easy to find that, for all the S-Boxes, there are plenty of x which satisfy property 1 . This property will be used later when we choose related keys.

3.2 Differential Collision Properties for Nonlinear Function f and WD16

Nonlinear function f and $W D 16$ are the basic elements of Hummingbird-2. In this section, we will discuss the differential collision properties of nonlinear function f and WD16.

First of all, we illustrate the structure of the two functions as follow.

Fig. 1. Nonlinear Function f and $W D 16$
The nonlinear function WD16 is a function with 80 bit input and 16 bit output. There must exist collisions during the encryption and decryption process, but whether these collisions satisfy certain structure character is still a problem to be further studied. Next we will use an example to show the existence of this character.
The round function WD16 can be viewed as a small "block cipher" and the structure of $W D 16$ is the simplest $S P$ structure. Denoted that the input differential of WD16 is ($\Delta a, \Delta b, 0,0$), when the equation (1) below satisfies, the output differential for WD16 is
zero.

$$
\begin{equation*}
f(x \oplus a) \oplus b=f(x \oplus a \oplus \Delta a) \oplus b \oplus \Delta b \tag{1}
\end{equation*}
$$

The equation (1) is equal to equation (2) below:

$$
\begin{equation*}
S(x \oplus a) \oplus S(x \oplus a \oplus \Delta a)=L^{-1}(\Delta b) \tag{2}
\end{equation*}
$$

We can split the equation (2) as the following equations:

$$
\left\{\begin{array}{l}
S_{1}\left(x_{0} \oplus a_{0}\right) \oplus S_{1}\left(x_{0} \oplus a_{0} \oplus \Delta a_{0}\right)=c_{0} \tag{3}\\
S_{2}\left(x_{1} \oplus a_{1}\right) \oplus S_{2}\left(x_{1} \oplus a_{1} \oplus \Delta a_{1}\right)=c_{1} \\
S_{3}\left(x_{2} \oplus a_{2}\right) \oplus S_{3}\left(x_{2} \oplus a_{2} \oplus \Delta a_{2}\right)=c_{2} \\
S_{4}\left(x_{3} \oplus a_{3}\right) \oplus S_{4}\left(x_{3} \oplus a_{3} \oplus \Delta a_{3}\right)=c_{3}
\end{array}\right.
$$

Among which $a=\left(a_{0}\left\|a_{1}\right\| a_{2} \| a_{3}\right), b=\left(b_{0}\left\|b_{1}\right\| b_{2} \| b_{3}\right), L^{-1}(\Delta b)=c=\left(c_{0}\left\|c_{1}\right\| c_{2} \| c_{3}\right)$.
According to the analysis of the S-Boxes in section 3.1 we can get that the highest differential probability for all of the S-Boxes is $1 / 4$, if we choose proper Δa and Δb, the collision probability we listed above can reach $1 / 4$. Take the input differential $\Delta a=\left(\Delta a_{0}\left\|\Delta a_{1}\right\| \Delta a_{2} \| \Delta a_{3}\right)$ as an example, if $\Delta a_{0} \neq 0$, and S_{1} is the only active S-Box, in addition $\Delta a_{0} \rightarrow c_{0}$ is the highest probability differential characteristic for S_{1}, the output differential for $W D 16$ is zero with probability of $1 / 4$. This result will be used later.

3.3 Differential Properties of Hummingbird-2

In section 3.2, we have analyzed the differential collision character for WD16, in this section, we will show how to use the collision character into analyzing Hummingbird-2.

The main structure of Hummingbird-2 is four round iteration of WD16, during the initialization and the encryption process, the input for WD16 is $(x, a, b, c, d), x$ is either $I V \mathrm{~s}$ or the intermediate variable, (a, b, c, d) are the independent keys injected directly. According to the analysis in section 3.2 we can get to know that if we choose proper related keys we can make the output differential for $W D 16$ to be zero with high probability, furthermore the differentials for intermediate variables and 8 registers are zero with high probability at the same time, if these characters can be kept to the output of the ciphertext, we can judge whether the differential character we constructed using the related keys occurred by examining the differential of the ciphertext. Then we can recover the corresponding subkey blocks through differential techniques.

To avoid misunderstanding, we denote "one round of the algorithm" represents 4 iterations of $W D 16$, either in the initialization process or encryption process, so the
initialization process consists of four rounds of the algorithm and each round of the algorithm generates 16 bits ciphertext during the encryption process.

To minimize the probability of differential over round function WD16, the number of active S-Boxes must be minimized. As the algorithm consists of four round functions, and for each block of subkey it is used twice, on the same location of first round and the third round or the second round and the fourth round. So if we introduce a differential on the subkey of the first round or the second round which causes an active S-Box, at the same position on the third round or the fourth round must emerge an active S-Box. That is to say, the number of the active S -boxes is even, at least 2.

We denote subkey K_{i} as $\left(K_{i}[0], K_{i}[1], K_{i}[2], K_{i}[3]\right)$, supposing $\Delta K_{1}=K_{1} \oplus K_{1}{ }^{\prime}=(0,0,0$, $\left.\Delta K_{1}[3]\right)_{16},\left(\Delta K_{1}[3] \neq 0\right)$, if $I V=I V^{\prime}$, during the first $W D 16$ function of the initialization process, only S_{4} is active, if $\Delta K_{1}[3] \rightarrow \Delta Z[3]$ is any one of the differential characteristic with probability of p, according to the differential collision properties in section 3.2, if we choose related keys $\Delta K_{2}=L(0,0,0, \Delta Z[3]), \Delta K_{3}, \cdots, \Delta K_{8}$ are all zero, it is obvious that for each round function $W D 16$, the probability for zero output differential is p. Furthermore, each encryption process (or initialization process) consists of four round function WD16, according to the algorithm, in the same position of the third round of $W D 16$ function the differential pair $\Delta K_{1}[3] \rightarrow \Delta Z[3]$ also exists, so if the differential of the $I V$ is zero, under the related keys above, the differential after the first round of the algorithm is zero with probability of p^{2}.

We take $\Delta K_{1}=(0003)_{16}$ as an example, the initialization and the encryption process of the algorithm have the properties below:

Property 2 Differential characteristic of the initialization for each round: Under the key differential $\Delta K=\left(\Delta K_{1}, \Delta K_{2}, \Delta K_{3}, \Delta K_{4}, \Delta K_{5}, \Delta K_{6}, \Delta K_{7}, \Delta K_{8}\right)=(0003,0441,0000,0000,0000,0000$, $0000,0000)_{16}$, the differential characteristic below passes each round of initialization for the probability of $1 / 2^{4}$:

If we find some $I V \mathrm{~s}$ which make the differential characteristic above occurs, we can use the differential pair $0 x 3 \rightarrow 0 x 1$ of S_{4} to recover the input, i.e. $I V_{1}[3] \oplus K_{1}[3]$, as $I V_{1}$ is known, we can recover the subkey block $K_{1}[3]$ accordingly.

Property 3 Differential characteristic of the whole initialization process: Under the key differential $\Delta K=\left(\Delta K_{1}, \Delta K_{2}, \Delta K_{3}, \Delta K_{4}, \Delta K_{5}, \Delta K_{6}, \Delta K_{7}, \Delta K_{8}\right)=(0003,0441,0000,0000,0000,0000$, $0000,0000)_{16}$, the differential characteristic below passes the whole initialization process for the probability of $1 / 2^{16}$:

As the initialization process are four rounds in all, the characteristic in property 2 can hold through the whole initialization process with probability of $1 / 2^{16}$.

Property 4 An iterated differential characteristic during the encryption process: Under the key differential in the property 2 , the differential characteristic below passes each encryption process for the probability of $1 / 2^{4}$:

The property 4 denotes that if the differential of the plaintext is (0000), based on the condition of property 3 , the differential of the ciphertext is (0000) for the probability of $1 / 2^{4}$.

As for the several properties above, under the condition of related keys, if the $I V$ differential and the plaintext (P) differential are both zero, when we change the value of $I V$, we can always find such values which can satisfy these three properties.

3.4 Key Recovery Attack on Hummingbird-2

In this section, we introduce a key recovery attack algorithm on Hummingbird-2. Here is the clue of the attack: Firstly, we construct differentials through related keys, then we use different $I V$ s to run the initialization process and the first round of the encryption process until we find a proper $I V$ which satisfy the three properties in the section 3.3 , whether a $I V$ satisfies these properties can be shown through the ciphertext differential. If the $I V$ can make the ciphertext differential to be zero, we will use the second filter to guarantee that it's the related key we constructed makes the ciphertext differential to be zero rather than the random case. If the $I V$ can get through the second filter, we can get the input of the active S-Box for the first $W D 16$ function of the initialization process, then the subkey
candidates can be calculated. Here we use two different related keys that satisfy property 1 to make the subkey unique. Subkeys $K_{1}, \cdots, K_{3}, K_{5}, \cdots, K_{7}$ can be recovered using this method but K_{5}, \cdots, K_{7} can be recovered on condition of K_{4} is known, then we introduce a novel technique to recover K_{4}. In addition, K_{8} can be recovered by exhaustive search.

Next, we take the recovery process of the four most significant bits of subkey K_{1}, ie. $K_{1}[3]$ as an example to introduce the procedure of the key recover, among which we select $\Delta K^{(1)}=(0003,0441,0000,0000,0000,0000,0000,0000)_{16}$ and $\Delta K^{(2)}=(000 a, 1104$, $0000,0000,0000,0000,0000,0000)_{16}$.

Algorithm 1 The key recovery algorithm 1
Phase0. Define sets σ_{1} and $\sigma_{2}, \Phi \rightarrow \sigma_{1}, \Phi \rightarrow \sigma_{2}$;
Phase1. Encrypt using related keys K and $K \oplus \Delta K^{(1)}$, changing $I V$ until we find a $I V$ which make $C_{0}=C_{0}{ }^{\prime}$;
(Remark: P_{0} can be any value but the difference ΔP_{0} must be zero)
Phase2. Encrypt with the $I V$ we got from Phase 1 and different $P_{0}\left(\Delta P_{0}\right.$ is zero), if we use N different P_{0}, calculate the number of P_{0} which makes $C_{0}=C_{0}{ }^{\prime}\left(\right.$ denoted as t), if $t \gg N \times \frac{1}{2^{16}}$ (The random case), goto Phase 3, or discard the $I V$ and goto Phase1;

Phase3. As the $I V$ we got from Phase2 must satisfy the three properties in section 3.3. So the first differential characteristic for S_{4} must be $0 x 3 \rightarrow 0 x 1$, searching S-Box distribution of the probability of differentials we can get to know that the input (Actually $K_{1}[3] \oplus I V_{1}[3]$) must be one element of the set $\{0 x 1,0 x 2,0 x d, 0 x e\}$, compare $I V_{1}[3]$ with the elements in σ_{1}, if $I V_{1}[3] \in \sigma_{1}$, goto Phase1, or add $I V_{1}[3]$ into the set σ_{1} and make the intersection of the sets $\left\{I V_{1}[3]\right\}$ and σ_{2}, if the intersection set is empty, goto Phase4, or goto Phase5;

Phase4. We call the process of Phase1 and Phase2 to be "Ciphertext Filter". Filter the IVs with related keys K and $K \oplus \Delta K^{(2)}$ until a $I V^{\prime}$ can get through the "Ciphertext Filter". Compare $I V_{1}$ '[3] with the elements in σ_{2}, if $I V_{1}{ }^{\prime}[3] \in \sigma_{2}$, goto Phase4, or add $I V_{1}$ '[3] into the set σ_{2} and make the intersection of the sets $\left\{I V_{1}{ }^{\prime}[3]\right\}$ and σ_{1}, if the intersection set is empty, goto Phase1, or goto Phase5;

Phase5. Denote $\sigma_{1} \mathrm{I} \sigma_{2} @ I V_{1}^{*}[3]$, so $K_{1}[3]=I V_{1}^{*}[3] \oplus 0 x e$, and finish the algorithm.
Using the algorithm above we can always get the right value of $K_{1}[3]$, the rest 12 bits $K_{\mathrm{l}}[0], K_{\mathrm{l}}[1]$ and $K_{\mathrm{l}}[2]$ can be recovered in the same way.

Similarly, through using different related keys and known K_{1}, we can use the same technique to recover K_{2}, under the conditions of known K_{1} and K_{2} we can recover K_{3}. In

Table 4, we list the related keys needed to recover the subkeys K_{1}, K_{2} and K_{3}.
Table 4. Related Keys Needed to Recover the Subkeys K_{1}, K_{2} and K_{3}

Subkey Blocks Recovered	The First Related Key $\Delta K^{(1)}$	The Second Related Key $\Delta K^{(2)}$
$K_{1}[0]$	$(3000,2088,0000,0000,0000,0000,0000,0000)_{16}$	$(b 000,1044,0000,0000,0000,0000,0000,0000)_{16}$
$K_{1}[1]$	$(0 f 00,4104,0000,0000,0000,0000,0000,0000)_{16}$	$(0300,8208,0000,0000,0000,0000,0000,0000)_{16}$
$K_{1}[2]$	$(0050,1041,0000,0000,0000,0000,0000,0000)_{16}$	$(00 d 0,2082,0000,0000,0000,0000,0000,0000)_{16}$
$K_{1}[3]$	$(0003,0441,0000,0000,0000,0000,0000,0000)_{16}$	$(000 a, 1104,0000,0000,0000,0000,0000,0000)_{16}$
$K_{2}[0]$	$(0000,3000,2088,0000,0000,0000,0000,0000)_{16}$	$(0000, b 000,1044,0000,0000,0000,0000,0000)_{16}$
$K_{2}[1]$	$(0000,0 f 00,4104,0000,0000,0000,0000,0000)_{16}$	$(0000,0300,8208,0000,0000,0000,0000,0000)_{16}$
$K_{2}[2]$	$(0000,0050,1041,0000,0000,0000,0000,0000)_{16}$	$(0000,00 d 0,2082,0000,0000,0000,0000,0000)_{16}$
$K_{2}[3]$	$(0000,0003,0441,0000,0000,0000,0000,0000)_{16}$	$(0000,000 a, 1104,0000,0000,0000,0000,0000)_{16}$
$K_{3}[0]$	$(0000,0000,3000,2088,0000,0000,0000,0000)_{16}$	$(0000,0000, b 000,1044,0000,0000,0000,0000)_{16}$
$K_{3}[1]$	$(0000,0000,0 f 00,4104,0000,0000,0000,0000)_{16}$	$(0000,0000,0300,8208,0000,0000,0000,0000)_{16}$
$K_{3}[2]$	$(0000,0000,0050,1041,0000,0000,0000,0000)_{16}$	$(0000,0000,00 d 0,2082,0000,0000,0000,0000)_{16}$
$K_{3}[3]$	$(0000,0000,0003,0441,0000,0000,0000,0000)_{16}$	$(0000,0000,000 a, 1104,0000,0000,0000,0000)_{16}$

As it will induce the differential into the registers if we use the method above to recover K_{4}, we must think of other ways to recover it. Here we introduce a novel technique to filter the K_{4} candidates. As the $I V$ s which pass the "Ciphertext Filter" must satisfy three properties similar to those in 3.3 , so if we introduce differential in K_{5} and K_{6}, we can get the input of the first S-Boxes for the second $W D 16$ function of the initialization process. However, though K_{5} is unknown, we can eliminate this effect by differential technique, we can get to know the differential of t_{1}, further we can filter the right subkey K_{4} accordingly. Here is the filtering algorithm for K_{4}.

Algorithm 2 Filtering Algorithm for K_{4}
Phase1. Encrypt using related keys K and $K \oplus \Delta K, \Delta K=(0000,0000,0000,0000,3000,2088,0000$,
$0000)_{16}$, change different $I V$ s until we find a $I V$ and $I V^{\prime}$ which can both pass the "Ciphertext Filter";
Phase2. As the differential characteristic for S_{1} is $0 x 3 \rightarrow 0 x 2$, searching S-Box distribution of the
probability of differentials we can get to know that the input of the S_{1}, i.e. $\left(t_{1}[0] \oplus R_{2}^{(0)}[0]\right)$
$\oplus K_{5}[0]$ under $I V$ and $I V^{\prime}$. Encrypt the first $W D 16$ function of the initialization process with $I V$ or $I V^{\prime}$,
K_{1}, K_{2}, K_{3} and K_{4} candidates to calculate $\left(t_{1}[0] \oplus R_{2}^{(0)}[0]\right) \oplus\left(t_{1}{ }^{\prime}[0] \oplus R_{2}^{(0)} '[0]\right)$, if it isn't among one of
the $\{0 x 0,0 x 3,0 x c, 0 x f\}$ (The differential set for S_{1} input), the K_{4} candidate is incorrect, discard the K_{4}

candidate from the candidate set and goto Phase3, or goto Phase 1;
Phase3. Check the number of the candidate set, if the number is not equal to 1 , goto Phase 1 and keep filtering, or finish the algorithm.

If $I V$ and $I V$ ' can pass the "Ciphertext Filter", the differential characteristic constructed by related keys must have appeared and according to the differential characteristic $0 \times 3 \rightarrow 0 \times 2$ for S_{1}, we can conjecture that the input must be one of the $0 x 1,0 x 2,0 x d, 0 x e$, XOR the four elements with each other we can get a new set $\{0 x 0,0 x 3$, $0 x c, 0 x f\}$ and this is the differential set for S_{1} input. As $\left(t_{1}[0] \oplus R_{2}^{(0)}[0]\right) \oplus\left(t_{1}{ }^{\prime}[0] \square\right.$ $\left.R_{2}^{(0)}{ }^{\prime}[0]\right)=\left(t_{1}[0] \oplus R_{2}^{(0)}[0]\right) \oplus K_{5}[0] \oplus\left(t_{1}{ }^{\prime}[0] \oplus R_{2}^{(0)} '[0]\right) \oplus K_{5}[0]$, if we use the incorrect K_{4}, $\left(t_{1}[0] \pm R_{2}^{(0)}[0]\right) \oplus K_{5}[0]$ and $\left(t_{1}{ }^{\prime}[0] \oplus R_{2}^{(0)}{ }^{\prime}[0]\right) \oplus K_{5}[0]$ are both random and the $\left(t_{1}[0] \oplus R_{2}^{(0)}[0]\right) \oplus\left(t_{1}^{\prime}[0] \oplus R_{2}^{(0)} \cdot[0]\right)$ falls into the set $\{0 x 0,0 x 3,0 x c, 0 x f\}$ with probability of $4 / 16$, as $\left(2^{16}-1\right) \times(1 / 4)^{8}<1$. In average, we can eliminate all the incorrect K_{4} candidates through eight different $I V$ and $I V^{\prime}$. As $R_{2}^{(0)}$ and $R_{2}^{(0)}$ 'are filled with $I V$ and $I V^{\prime}$, so we can calculate $\left(t_{1}[0] \oplus R_{2}^{(0)}[0]\right) \oplus\left(t_{1}^{\prime}[0] \oplus R_{2}^{(0)} '[0]\right)$ easily.

After the recovery of K_{4}, we can recover subkeys K_{5}, K_{6}, K_{7} according to Algorithm1 and the related keys needed are as follows:

Table 5. Related Keys Needed to Recover Subkeys K_{5}, K_{6} and K_{7}

| Subkey
 Blocks
 Recovered | The First Related Key $\Delta K^{(1)}$ | The Second Related Key $\Delta K^{(2)}$ |
| :---: | :---: | :---: | :---: |
| $K_{5}[0]$ | $(0000,0000,0000,0000,3000,2088,0000,0000)_{16}$ | $(0000,0000,0000,0000, b 000,1044,0000,0000)_{16}$ |
| $K_{5}[1]$ | $(0000,0000,0000,0000,0 f 00,4104,0000,0000)_{16}$ | $(0000,0000,0000,0000,0300,8208,0000,0000)_{16}$ |
| $K_{5}[2]$ | $(0000,0000,0000,0000,0050,1041,0000,0000)_{16}$ | $(0000,0000,0000,0000,00 d 0,2082,0000,0000)_{16}$ |
| $K_{5}[3]$ | $(0000,0000,0000,0000,0003,0441,0000,0000)_{16}$ | $(0000,0000,0000,0000,000 a, 1104,0000,0000)_{16}$ |
| $K_{6}[0]$ | $(0000,0000,0000,0000,0000,3000,2088,0000)_{16}$ | $(0000,0000,0000,0000,0000, b 000,1044,0000)_{16}$ |
| $K_{6}[1]$ | $(0000,0000,0000,0000,0000,0 f 00,4104,0000)_{16}$ | $(0000,0000,0000,0000,0000,0300,8208,0000)_{16}$ |
| $K_{6}[2]$ | $(0000,0000,0000,0000,0000,0050,1041,0000)_{16}$ | $(0000,0000,0000,0000,0000,00 d 0,2082,0000)_{16}$ |
| $K_{6}[3]$ | $(0000,0000,0000,0000,0000,0003,0441,0000)_{16}$ | $(0000,0000,0000,0000,0000,000 a, 1104,0000)_{16}$ |
| $K_{7}[0]$ | $(0000,0000,0000,0000,0000,0000,3000,2088)_{16}$ | $(0000,0000,0000,0000,0000,0000, b 000,1044)_{16}$ |
| $K_{7}[1]$ | $(0000,0000,0000,0000,0000,0000,0 f 00,4104)_{16}$ | $(0000,0000,0000,0000,0000,0000,0300,8208)_{16}$ |
| $K_{7}[2]$ | $(0000,0000,0000,0000,0000,0000,0050,1041)_{16}$ | $(0000,0000,0000,0000,0000,0000,00 d 0,2082)_{16}$ |
| $K_{7}[3]$ | $(0000,0000,0000,0000,0000,0000,0003,0441)_{16}$ | $(0000,0000,0000,0000,0000,0000,000 a, 1104)_{16}$ |

We have recovered 112 bits of the key $\left(K_{1}, \cdots, K_{7}\right)$ so far, and the remaining 16 bits K_{8} can be recovered by exhaustive search.

3.5 Complexities of the Attack

First of all, let us calculate the amount of $I V \mathrm{~s}$ needed to recover 4 bits of the key for algorithm 1. When $N=2^{20}$, in average, there are $2^{20} \times 1 / 2^{-20}+2^{20} \times 1 / 2^{-16}=17 \mathrm{IVs}$ which can pass the Phase 1 test of Algorithm 1, but only one of them can pass the Phase 2 test. In worst case, the sets σ_{1}, σ_{2} generate the final $I V_{i}[j]$ when $\left|\sigma_{1}\right|=4$ and $\left|\sigma_{2}\right|=4$. So the number of $I V \mathrm{~s}$ needed is about $2 \times 4 \times 2^{20}=2^{23}$. As for the filter for Phase 2 of Algorithm 1 , the maximum amount for $\left(P_{0}, C_{0}\right)$ is far less than $17 \times 2^{16} \approx 2^{20.1}$ which can be ignored when compared with the complexity of $I V$ filtering process for Phase 1 . To recover K_{1}, K_{2}, K_{3}, the $I V$ s needed are $12 \times 2^{23} \approx 2^{26.6}$ and accordingly the computational complexity is $O\left(2^{26.6}\right)$.

To recover K_{4}, we need eight $I V$ pairs in average, which makes us need about $8 \times 2 \times 2^{20} \approx 2^{24}$ chosen $I V$ s. For computational complexity, during the process of choosing $I V$, the computational complexity is $O\left(2^{24}\right)$, and during the filtering of the correct K_{4}, the computational complexity is $8 \times 2 \times 3+2^{16} \times\left(1+(1-1 / 4)+(1-1 / 4)^{2}+(1-1 / 4)^{3} \cdots+(1-1 / 4)^{8}\right) \approx 2^{17.9}$ one iteration of WD16 function, which can be ignored when compared with the computational complexity of choosing $I V$, so the computational complexity to recover K_{4} is $O\left(2^{24}\right)$.

The $I V$ s needed and computational complexity to recover K_{5}, K_{6}, K_{7} are the same as those to recover K_{1}, K_{2}, K_{3}.

To sum up, we need $2^{27.6}$ chosen $I V$ s and the computational complexity is $O\left(2^{27.6}\right)$ to recover the first 112 bits key. The data complexity to recover K_{8} is $O(1)$ and computational complexity of $O\left(2^{16}\right)$ which can be ignored when compared with the complexities above. So the computational complexity to recover the full key is $O\left(2^{27.6}\right)$, which needs $2^{27.6}$ chosen $I V \mathrm{~s}$, the computational complexity is $O\left(2^{27.6}\right)$. The related keys needed are shown in Table 4 and Table 5, we need 48 related keys in all.

3.6 An Improvement of the Attack

We can use Algorithm 2 to recover $K_{1}, K_{2}, K_{5}, K_{6}$ which can further improve our result. The related keys and algorithm used are as follows:
Note that the related key pair used to recover K_{2} (or K_{6}) is included in the related keys to recover K_{3} (or K_{7}). So in this strategy, we totally need 19 related keys. The $I V$ s needed to recover K_{3} and K_{7} is 2^{26} and the computational complexity is $O\left(2^{26}\right)$ accordingly. Otherwise, the $I V_{\mathrm{s}}$ needed to recover $K_{1}, K_{2}, K_{4}, K_{5}, K_{6}$ is $5 \times 2^{24} \approx 2^{26.3}$, and the computational
complexity is $O\left(2^{26.3}\right.$
Table 6. Another Strategy to Recover the Key

Related Keys Needed	Keys Recovered	The Number of Related Keys	Algorithm Used
$K_{2}-K_{3}$	K_{1}	1	Algorithm 2
$K_{3}-K_{4}$	K_{2}	1	Algorithm 2
$K_{3}-K_{4}$	K_{3}	8	Algorithm 1
$K_{5}-K_{6}$	K_{4}	1	Algorithm 2
$K_{6}-K_{7}$	K_{5}	1	Algorithm 2
$K_{7}-K_{8}$	K_{6}	1	Algorithm 2
$K_{7}-K_{8}$	K_{7}	8	Algorithm 1

).
What's more, we could recover $K_{7}[2]$ and $K_{7}[3]$ by exhaustive search, this will add the exhaustive search complexity to $O\left(2^{24}\right)$, but this will decrease 4 pairs of related key used, in this scenario, the $I V \mathrm{~s}$ needed is 2^{27}, and the computational complexity is $O\left(2^{27}\right)$.

So, we totally just need 15 related keys, 2^{27} chosen $I V$ s and the computational complexity is $O\left(2^{27}\right)$ in our improved attack.

3.7 Experimental Verification

To guarantee the correctness and demonstrate the efficiency of our attack we implemented the above attack algorithms. The experiment environment, experiment process and result are as follow.

Experiment Environment: Microsoft Visual C++(SP6), Windows XP professional SP3, Pentium(R)-4, CPU 2.5GHz, 1.0 Gb RAM.

Experiment Process: Choose 50 keys randomly, then try to recover the key according to our attack algorithm and the improved attack algorithm, the output is the key recovered and the time cost.

Result: All of the keys are recovered correctly, time spent to recover one key ranges from 10.2 minutes to 16.1 minutes. In average, we need about 13.2 minutes to recover a key in our experiment environment.

The result shows that our attack can break Hummingbird-2 in real time under the related key model.

4. Conclusion

The designers of Hummingbird-2 claimed that Hummingbird-2 is resistant to all previously known cryptanalytic attacks, including related key attack. However, in this paper, we present a related-key chosen $I V$ attack combining with differential techniques on Hummingbird- 2 which can break the algorithm in real time. First of all, we use related keys to construct partial differential with high probability and we ensure the collision with sufficient chosen $I V$ s. Then we judge the inner collision through the differential of the ciphertext. Finally, we use differential techniques to recover the initial key. As the key loading algorithm is too simple, though adding the influence of the registers, these effects can be eliminated by differential techniques, which makes the attack possible. Under 15 pairs of related keys, we can recover the 128 bit initial key with computational complexity of $O\left(2^{27}\right)$ and 2^{27} chosen $I V$ s. Experiment shows that the keys can be recovered in real time. Compared with the attack proposed by Markku-Juhani O. Saarinen, our attack uses the inner differential characteristic of round function WD16 rather than the outer differential characteristic and our attack works on Hummingbird-2 cipher with manageably low space and time complexity. Furthermore, we have proved that the Hummingbird- 1 can also be analyzed in the same way. The result in this paper shows that Hummingbird-2 cipher can't resist the related-key attack. As the related key attack is a strong model for cryptanalysis, the ability of Hummingbird family ciphers to resist other cryptanalysis in weaker model is further to be studied.

References

[1] D. Engels, M.J.O. Saarinen, and E.M. Smith, "The Hummingbird-2 Lightweight Authenticated Encryption Algorithm," in Proc. of the 7th Workshop on RFID Security and Privacy-RFIDSec 2011, 2011. Article (CrossRef Link).
[2] D. Engels, X. Fan, G. Gong, H. Hu, and E.M. Smith, "Hummingbird: Ultra-Lightweight Cryptography for Resource-Constrained Devices," in Proc. of FC 2010 Workshops, RLCPS, WECSR, and WLC 2010, LNCS 6054, Springer-Verlag, pp.3-18, 2010. Article (CrossRef Link).
[3] E. Biham, "New types of cryptanalytic attacks using related keys," in Proc. of EUROCRYT 1993, LNCS 765. Springer-Verlag, pp. 398-309, 1994. Article (CrossRef Link).
[4] E. Biham, A. Shamir, "Differential Cryptanalysis of DES-like Cryptosystems," in Proc. of CRYPTO 1990. LNCS 537. Springer-Verlag, pp. 2-21, 1990. Article (CrossRef Link).
[5] E. Biham, E. Dunkelman, O. Keller, "Related-key boomerang and rectangle attacks," in Proc. of EUROCRYPT 2005, LNCS 3494. Springer-Verlag, pp. 507-525, 2005. Article (CrossRef Link).
[6] E. Biham, O. Dunkelman, N. Keller, "Related-key impossible differential attacks on 8-round AES-192," in Proc. of CT-RSA 2006, LNCS 3860. Springer-Verlag, pp. 21-33, 2006. Article (CrossRef Link).
[7] G. Jakimoski, Y. Desmedt, "Related-Key differential cryptanalysis of 192-bit key AES Variants," in Proc. of SAC 2003, LNCS 3006. Springer-Verlag, pp. 209 - 221, 2004. Article (CrossRef Link).
[8] J. Keysey, B. Schneier, and D. Wanger, "Key-Schedule Cryptanalysis of IDEA, G-DES, GOST, SAFER, and Triple-DES," in Proc. of CRYPTO 1996, LNCS 1109. Springer-Verlag, pp. 237-251, 1996. Article (CrossRef Link).
[9] L. Knudsen, "Cryptanalysis of LOKI," in Proc. of ASIACRYPT 1992, LNCS 739, Springer-Verlag, pp.22-35, 1993. Article (CrossRef Link).
[10] M.J.O. Saarinen, "Cryptanalysis of Hummingbird-1," in Proc. of FSE 2011. LNCS 6733, Springer-Verlag, pp.328-341, 2011. Article (CrossRef Link).
[11] Q. Chai and G. Gong, "A Cryptanalysis of HummingBird-2: The Differential Sequence Analysis," Cryptology ePrint Archive. Report 2012/233 (2012).
http://eprint.iacr.org/2012/233.pdf
[12] R.P. Weinmann and K. Wirt, "Analysis of the DVB Common Scrambling Algorithm," in Proc. of the Eighth IFIP TC-6 TC-11 Conference on Communications and Multimedia Security, CMS 2004, Kluwer Academic Publishers, vol. 175, pp.195-207, 2005. Article (CrossRef Link).
[13] W. Zhang, W. Wu, L. Zhang, and D. Feng, "Improved related-key impossible differential attack on reduced-round AES-192," in Proc. of SAC 2006, LNCS 4356. Springer-Verlag, , pp.15-27, 2007. Article (CrossRef Link).
[14] X. Fan and G. Gong, "On the Security of Hummingbird-2 against Side Channel Cube Attack," in Proc. of the 2011 West European Workshop on Research in CryptographyWEWoRC 2011, Springer-Verlag, pp.100-104, 2011.
http://www.uni-weimar.de/cms/fileadmin/medien/medsicherheit/WEWoRC2011/files/conference record3.pdf\#page=106

Kai Zhang received B.S. degree from Zhengzhou Information Science and Technology Institute in 2010. He is studying for M.S. degree in cryptography in the same university. His current research interests include design and analysis of symmetric ciphers.

Lin Ding received B.S. degree from Zhengzhou Information Science and Technology Institute in 2009. He is studying for M.S. degree in cryptography in the same university. His research interests include design and analysis of stream ciphers.

Junzhi Li is studying for B.S. in information security in Zhengzhou Information Science and Technology Institute. His research interests include cryptanalysis of symmetric ciphers.

Jie Guan is an associate professor of Zhengzhou Information Science and Technology Institute. Her main subject interest is cryptography and her main teaching lies in the areas of information systems, the theory of cryptography and quantum computation. She received Ph.D. degree in cryptography from Zhengzhou Information Science and Technology Institute in 2004.

[^0]: * A preliminary version of this paper appeared in eprint archive which is available at http://eprint.iacr.org/2012/207
 The authors would like to thank the anonymous reviewers and Dr. Markku-Juhani O. Saarinen for helpful comments

