DOI QR코드

DOI QR Code

Finding Isolated Zones through Connectivity Relationship Analysis in Indoor Space

실내공간의 연결성 분석을 통한 고립지역 탐색

  • 이슬지 (서울시립대학교 공간정보공학과) ;
  • 이지영 (서울시립대학교 공간정보공학과)
  • Received : 2012.02.10
  • Accepted : 2012.06.26
  • Published : 2012.06.30

Abstract

In Korea, u-City has been constructed as IT-based new city with introduction of the ubiquitous concept. However, most currently provided u-services are just monitoring services based on the USN(Ubiquitous Sensor Network) technology, so spatial analysis is insufficient. Especially, buildings have been rapidly constructed and expanded in multi-levels, and people spend a lot of time in indoor space, so indoor spatial analysis is necessary. Therefore, connectivity relationship in indoor space is analyzed using the topological data model. Topological relationships could be redefined due to the dynamic changes of environment in indoor space, and changes could have an effect on analysis results. In this paper, the algorithms of finding isolated zones is developed by analyzing connectivity relationship between space objects in built-environments after changes of environment in indoor space due to specific situation such as fire. And the system that visualizes isolated zones as well as three-dimensional data structure of indoor space is developed to get the analysis result by using the analysis algorithms.

유비쿼터스 환경을 구축하기 위하여 우리나라에서는 IT 기반 신도시 건설의 프로젝트인 u-City 사업이 추진되고 있지만, u-City에서 제공해주는 u-service는 USN(Ubiquitous Sensor Network)기반으로 모니터링에 치중하여 공간분석에 관한 서비스가 부재하다. 특히 대규모 복합 건물이 증가로 실내공간에서의 활동시간이 늘어남에 따라 단순한 모니터링이 아닌 3차원 실내 공간분석이 필요하다. 따라서 위상학적 데이터 모델을 기반으로 하여 실내 공간에서의 연결성을 분석하였다. 실내공간에서는 실외공간과 달리 공간 객체간의 연결이 제한적이기 때문에 환경변화에 따라 연결성이 바뀔 수 있고, 이에 따라 공간분석 결과 또한 달라질 수 있다. 본 연구에서는 연결성을 변화시키는 긴급 상황의 대표적인 예로 화재가 발생하였을 경우 연결성을 분석하고, 연결성 변화를 통해 생성될 수 있는 고립지역을 탐색하는 알고리즘을 개발하였다. 개발한 알고리즘을 적용하여 분석 결과를 도출하기 위하여, 실내공간의3차원 구조뿐만 아니라, 고립지역을 가시화하는 시스템을 구현하였다.

Keywords

References

  1. 이석호, 박세호, 이지영 (2010), 3차원 네트워크 기반 위상학적 데이터 모델을 이용한 3차원 인접성 공간질의, 한국공간정보학회지, 제 18권, 제 5호, pp. 93-105
  2. 이석호, 이지영 (2011), 3차원 공간 질의를 위한 위상학적 데이터 모델의 검증, 한국공간정보학회지, 제 19권, 제 1호, pp. 93-105
  3. Becker, T., C. Nagel and T.H. Kolbe (2008), A multilayered space-event model for navigation in indoor spaces, In Jiyeong. Lee and Sisi Zlatanova, (eds.), 3D Geo-information Sciences, Springer-Verlag, Berlin, pp. 61-77.
  4. Ellul C., Haklay M. (2006), Requirements for Topology in 3D GIS, Transactions in GIS, Vol. 10, No. 2, pp.157-175 https://doi.org/10.1111/j.1467-9671.2006.00251.x
  5. Galler, B.A., and Fisher, M.J. (1964), An improved equivalence algorithm, Commun.ACM, Vol. 7, No. 5, pp.301-303 https://doi.org/10.1145/364099.364331
  6. Kruskal, J.B., (1956), On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem, Proceedings of the American Mathematical Society, Vol. 7, No. 1, pp.48-50 https://doi.org/10.1090/S0002-9939-1956-0078686-7
  7. Lee J. (2005), A combinatorial data model for representing topological relations among 3D geographical features in micro-spatial environments, International Journal of Geographical Information Science, Vol. 19, No. 10, pp.1039-1056 https://doi.org/10.1080/13658810500399043
  8. Lee, J. (2001), A 3D Data Model for Representing Topological Relationships Between Spatial Entities in Built-Environments, unpublished Ph.D.Dissertation, Department of Geography, The Ohio State University
  9. Lee, J. (2004), A Spatial Access Oriented Implementation of a Topological Data Model for 3D Urban Entities, GeoInformatica, Vol. 8, No. 3, pp 235-262
  10. Lee, J. and Kwan, M-P. (2005), A Combinatorial Data Model for Representing Topological Relations among 3D Geographic Features in Micro-spatial Environments. International Journal of Geographical Information Science, Vol. 19, No. 10, pp. 1039-1056. https://doi.org/10.1080/13658810500399043
  11. Lee K, and Lee H. (1996). A new algorithm for graph-theoretic nodal accessibility measurement. Geographical Analysis, Vol. 30, pp. 1-14.
  12. Molenaar, M. (1990), A formal data structure for 3D vector maps, In: Proceedings of EGIS'90, Vol. 2, Amsterdam, The Netherlands, pp. 770-781.
  13. Munkres, J. R. (1984), Elements of Algebraic Topology. Addison-Wesley, Menlo Park, CA
  14. Pilouk, M., (1996), Integrated modelling for 3D GIS, Ph.D. Dissertation, ITC
  15. Tarjan, R. E., 1975. Efficiency of a good but not linear set union algorithm. Journal of the ACM, 22, pp. 215-225. https://doi.org/10.1145/321879.321884
  16. Zlatanova, S. (2000), On 3D topological relationships, In: proceedings of the 11th International Workshop on Database ad Expert System Applications, Greenwich, London, UK, pp. 913-919.

Cited by

  1. Topological Analysis in Indoor Shopping Mall using Ontology vol.31, pp.6, 2013, https://doi.org/10.7848/ksgpc.2013.31.6-2.511
  2. Integrating Image and Network-Based Topological Data through Spatial Data Fusion for Indoor Location-Based Services vol.2020, pp.None, 2012, https://doi.org/10.1155/2020/8877739