DOI QR코드

DOI QR Code

Analyzing Problem Instance Space Based on Difficulty-distance Correlation

난이도-거리 상관관계 기반의 문제 인스턴스 공간 분석

  • 전소영 (한국과학기술원 전산학과) ;
  • 김용혁 (광운대학교 컴퓨터소프트웨어학과)
  • Received : 2011.12.28
  • Accepted : 2012.07.26
  • Published : 2012.08.25

Abstract

Finding or automatically generating problem instance is useful for algorithm analysis/test. The topic has been of interest in the field of hardware/software engineering and theory of computation. We apply objective value-distance correlation analysis to problem spaces, as previous researchers applied it to solution spaces. According to problems, we define the objective function by (1) execution time of tested algorithm or (2) its optimality; this definition is interpreted as difficulty of the problem instance being solved. Our correlation analysis is based on the following aspects: (1) change of correlation when we use different algorithms or different distance functions for the same problem, (2) change of that when we improve the tested algorithm, (3) relation between a problem instance space and the solution space for the same problem. Our research demonstrates the way of problem instance space analysis and will accelerate the problem instance space analysis as an initiative research.

문제 인스턴스 탐색 혹은 자동 생성은 알고리즘 분석 및 테스트에 적용될 수 있으며, 하드웨어, 소프트웨어 프로그램, 계산 이론 등 다양한 수준에서 연구되어온 주제이다. 본 연구에서는 해(解) 공간에 사용된 목적값-거리 상관관계 분석을 문제 인스턴스 공간에 적용하였다. 문제 인스턴스의 목적값은 문제에 따라 알고리즘의 수행 시간과 최적해를 잘 구하는 정도로 정의하였다. 이러한 정의는 문제 인스턴스의 난이도로 해석할 수 있다. 상관관계는 3가지 측면에서 분석하였다: 첫째, 알고리즘과 거리 함수에 따른 상관관계 차이, 둘째, 알고리즘의 개선 전/후의 상관관계 변화, 셋째, 문제 인스턴스 공간과 해당 문제의 해 공간 사이의 연관성. 본 논문은 문제 인스턴스 공간에 상관계수 분석이 어떻게 적용될 수 있는지 보여주며, 문제 인스턴스 공간 분석을 본격적으로 다루는 첫번째 시도이다.

Keywords

References

  1. D. Saab, Y. Saab, and J. Abraham. CRIS: A test cultivation program for sequential VLSI circuits. In Proceedings of 1992 IEEE/ACM International Conference on Computer Aided Design, pp. 216-219, 1992.
  2. M. Srinvas and L. Patnaik. A simulation-based test generation scheme using genetic algorithms. In Proceedings International Conference VLSI Design, pp. 132-135, 1993.
  3. E. Rudnick, J. Patel, G. Greenstein, and T. Niermann. Sequential circuit test generation in a genetic algorithm framework. In Proceedings of the 31st Annual Conference on Design Automation (DAC '94) , pp. 698-704, 1994.
  4. F. Corno, E. Sanchez, M. Sonza Reorda, and G. Squillero. Automatic test program generation - a case study. IEEE Design & Test, 21(2):102-109, 2004. https://doi.org/10.1109/MDT.2004.1277902
  5. P. McMinn, Search-based software test data generation: a survey, Software Testing Verification and Reliability, 14(2):105-156, 2004. https://doi.org/10.1002/stvr.294
  6. C. Cotta and P. Moscato. A mixed-evolutionary statistical analysis of an algorithm's complexity. Applied Mathematics Letters, 16(1):41-47, 2003. https://doi.org/10.1016/S0893-9659(02)00142-8
  7. J. Hemert. Evolving combinatorial problem instances that are difficult to solve. Evolutionary Computation, 14(4):433-462, 2006. https://doi.org/10.1162/evco.2006.14.4.433
  8. M. Johnson and A. Kosoresow. Finding worst-case instances of, and lower bounds for, online algorithms using genetic algorithms. Lecture Notes in Computer Science, 2557:344-355, 2002.
  9. S.-Y. Jeon and Y.-H. Kim. A genetic approach to analyze algorithm performance based on the worst-case instances. Journal of Software Engineering and Applications, 3(8):767-775, 2010. https://doi.org/10.4236/jsea.2010.38089
  10. S.-Y. Jeon and Y.-H. Kim. Finding the best-case instances for analyzing algorithms: comparing with the results of finding the worst-case instance. In Proceedings of the Korea Computer Congress 2010, vol. 37, no. 2(C), pp. 145-150, 2010. (in Korean)
  11. 문병로, 쉽게 배우는 유전 알고리즘-진화적 접근법, 한빛미디어, 2008.
  12. K. D. Boese, A. B. Kahng, and S. Muddu. A new adaptive multi-start technique for combinatorial global optimization. Operations Research Letters, 16(2):101-113, 1994. https://doi.org/10.1016/0167-6377(94)90065-5
  13. Y.-H. Kim and B.-R. Moon. Investigation of the fitness landscapes in graph bipartitioning: an empirical study. Journal of Heuristics, 10(2): 111-133, 2004. https://doi.org/10.1023/B:HEUR.0000026263.43711.44
  14. T. Jones and S. Forrest. Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms. In Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 184-192, 1995.
  15. C. Reeves and T. Yamada. Genetic algorithms, path relinking, and the flowshop sequencing problem. Evolutionary Computation, 6(1):45-60, 1998. https://doi.org/10.1162/evco.1998.6.1.45
  16. T. Stutzle and H. Hoos. MAX-MIN Ant System. Future Generation Computer Systems, 16(8):889-914, 2000. https://doi.org/10.1016/S0167-739X(00)00043-1
  17. S.-Y. Jeon and Y.-H. Kim. New trials on test data generation: analysis of test data space and design of improved algorithm, In Proceedings of the International Conference on Software Engineering Research and Practice, pp. 352-356, 2011.
  18. M. Main and W. Savitch. Data Structures and Other Objects Using C++, 3rd ed., Pearson/Addison-Wesley, 2004.
  19. R. Sedgewick. Algorithms in C, Parts 1-4: Fundamentals, Data Structures, Sorting, Searching, 3rd ed., Addison-Wesley, 1998.
  20. D. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching, 2nd ed., Addison-Wesley, 1998.
  21. R. Neapolitan, and K. Naimipour. Foundations of Algorithms Using C++ Pseudocode, 3rd ed., Jones and Bartlett Publishers, Inc., 2008.