DOI QR코드

DOI QR Code

A study on the Reduction of the Stator iron loss on Permanent Magnet Synchronous Motor for Light Railway Transit Propulsion System

경량전철 추진용 영구자석 동기전동기의 고정자 철손 저감 연구

  • Park, Chan-Bae (Advanced Traction and Noncontact Feeding System Research Team, Korea Railroad Research Institute) ;
  • Lee, Hyung-Woo (Advanced Traction and Noncontact Feeding System Research Team, Korea Railroad Research Institute) ;
  • Lee, Byung-Song (Advanced Traction and Noncontact Feeding System Research Team, Korea Railroad Research Institute)
  • Received : 2012.06.04
  • Accepted : 2012.08.07
  • Published : 2012.08.30

Abstract

A study on the iron-loss reduction of 110kW-class Interior Permanent Magnet Synchronous Motor (IPMSM) for Light Railway Transit (LRT) is conducted. In general, the iron loss of IPMSM depends on the characteristics of core material and non-oriented electrical steel is used as a core material of IPMSM. In order to reduce the iron-loss of IPMSM, both non-oriented electrical steel and grain oriented electrical steel are applied as core material. Iron loss of 110kW-class IPMSM can be reduced approximately 40% comparing to an existing IPMSM by applying grain oriented electrical steel to the stator teeth.

IPMSM의 구동 중에 발생되는 철손은 코어 재료 특성에 의해 크게 좌우되며, 일반적으로 회전형 전동기에서는 모든 자속의 흐름 방향으로 자기적 특성이 동일한 무방향성 전기강판이 코어 재료로 사용된다. 무방향성 전기강판과 비교하여 방향성 전기강판은 자속의 흐름 방향으로의 자기적 특성이 우수한 장점을 가지고 있다. 따라서 본 연구에서는 IPMSM의 철손을 저감시키기 위하여 코어 재료로써 무방향성 전기강판과 방향성 전기강판을 동시에 사용하는 구조를 제안하였다. IPMSM의 고정자에 자속 흐름의 방향으로 가공된 방향성 전기강판을 이용한 분할 티스 구조를 적용함으로써 기존의 110kW급 IPMSM과 비교하여 거의 40% 정도의 철손 저감 효과를 얻을 수 있었다.

Keywords

References

  1. K. Yamazaki, H. Ishigami (2010) Rotor-Shape Optimization of Interior Permanent-Magnet Motors to Reduce Harmonic Iron Losses, IEEE Trans. Ind. Elec., 57(1), pp. 61-69. https://doi.org/10.1109/TIE.2009.2025285
  2. S.J. Kim, H.W. Lee, K.S. Kim, J.N Bae, J.B. Im, C.J. Kim, J. Lee (2009) Torque Ripple Improvement for Interior Permanent Magnet Synchronous Motor Considering Parameters with Magnetic Saturation, IEEE Trans. Magn., 45(10), pp. 4720-4723. https://doi.org/10.1109/TMAG.2009.2022053
  3. M. Nakano, K. Ishiyama, K.I. Arai, H. Fukunaga (1997) Reduction of iron loss in thin grain-oriented silicon steel sheets, IEEE Trans. Magn., 33(5), pp. 3754-3756. https://doi.org/10.1109/20.619561
  4. Z. Azar, L.J. Wu, D. Evans, Z.Q. Zhu (2010) Influence of rotor configuration on iron and magnet losses of fractional-slot IPM machines, 5th IET International Conference on Power Electronics, Machines and Drives(PEMD2010), pp. 1-5.
  5. Katsumi Yamazaki, Yu Fukushima and Makoto Sato (2009) Loss Analysis of Permanent-Magnet Motors With Concentrated Windings-Variation of Magnet Eddy-Current Loss Due to Stator and Rotor Shapes, IEEE Trans. on Industry Applications, Vol. 45, pp. 1334-1342. https://doi.org/10.1109/TIA.2009.2023393
  6. F. Gillon and P. Brochet (1999) Shape optimization of a permanent magnet motor using the Experimental design method, IEEE Trans. On Magnetics, Vol. 35, pp. 1278-1281. https://doi.org/10.1109/20.767184
  7. H.W. Lee, C.B. Park, B.S. Lee (2012) Core-loss Reduction on Permanent Magnet for IPMSM with Concentrated Winding, Journal of the Korean Society for Railway, 15(2), pp. 135-140. https://doi.org/10.7782/JKSR.2012.15.2.135
  8. Y. Matsuo, T. Higuchi, T. Abe (2011) Characteristics of a novel segment type switched reluctance motor using grain-oriented electric steel, 2011 International Conference on Electrical Machines and Systems(ICEMS), pp. 1-4.

Cited by

  1. Investigation of a Thermal Analysis Method for IPMSM in Railway Vehicles vol.16, pp.2, 2013, https://doi.org/10.7782/JKSR.2013.16.2.099
  2. A Study on the Water-cooling Jacket Design of IPMSM for Railway Vehicles vol.62, pp.10, 2013, https://doi.org/10.5370/KIEE.2013.62.10.1475
  3. Thermal Analysis of IPMSM with Water Cooling Jacket for Railway Vehicles vol.9, pp.3, 2014, https://doi.org/10.5370/JEET.2014.9.3.882
  4. A Study on the Thermal Characteristics of 110kW-class IPMSM for Light Railway Transit using the 3-Dimensional Thermal Equivalent Network considering Heat Source by Iron Loss Density Distributions vol.62, pp.7, 2013, https://doi.org/10.5370/KIEE.2013.62.7.1038