Redo-Coronary Artery Bypass due to Progression of the Celiac Axis Stenosis

Sang Yoon Yeom, M.D., Ho Young Hwang, M.D., Ph.D., Ki-Bong Kim, M.D., Ph.D.

We report a redo coronary artery bypass grafting (CABG) in a 55-year-old man. Angina recurred 7 years after the initial surgery. Coronary angiography showed all patent grafts except a faint visualization of the in situ right gastroepiploic artery (RGEA) graft, which was anastomosed to the posterior descending coronary artery, associated with celiac axis stenosis. Redo-CABG was performed at postoperative 10 years because of aggravated angina and decreased perfusion of the inferior wall in the myocardial single photon emission computed tomography. The saphenous vein graft was interposed between the 2 in situ grafts used previously; the right internal thoracic artery and RGEA grafts. Angina was relieved and myocardial perfusion was improved.

Key words: 1. Coronary artery bypass surgery
2. Reoperation
3. Ischemic heart disease

CASE REPORT

A 55 year-old man visited our emergency department because of increasing frequency of chest pain. He had undergone off-pump coronary artery bypass grafting (CABG) 10 years ago because of unstable angina associated with three vessel coronary artery disease. At the initial operation, the in situ right internal thoracic artery (ITA), in situ left ITA and in situ right gastroepiploic artery (RGEA) grafts were used to revascularize the left anterior descending coronary artery, two obtuse marginal coronary branches, and posterior descending coronary artery, respectively. An excess segment of the distal right ITA was connected to the side of left ITA as a Y-composite graft and anastomosed to the first diagonal coronary artery. Coronary angiography and myocardial single photon emission computed tomography (SPECT) were performed at 5 years after surgery as a follow-up study. The 5-year angiography showed all patent grafts and the myocardial SPECT demonstrated no perfusion decrease. Exertional chest pain recurred at 7 years after surgery, and a repeated coronary angiography showed patent previous grafts including faint visualization of the in situ RGEA graft associated with significant stenosis at the os of the celiac axis. The computed tomographic angiogram also demonstrated a 90% stenosis at the celiac os, which had been without stenosis on abdominal angiography taken before the surgery (Fig. 1). The myocardial SPECT, however, demonstrated no perfusion decrease. Redo off-pump CABG was performed 10 years after the initial surgery because of an increasing frequency of angina and an aggravated finding of the follow-up myocardial SPECT, which was a newly developed reversible perfusion decrease in the inferior wall (Fig. 2).
Fig. 1. (A) Abdominal aortography demonstrating no celiac axis stenosis before the initial surgery. (B) Computed tomography angiogram showed a 90% stenosis of the celiac axis os at postoperative 7 years.

Fig. 2. Postoperative 10-year myocardial single photon emission computed tomography demonstrating a newly developed reversible perfusion decrease in the inferior wall.

At reoperation, the great saphenous vein was harvested from the lower leg and interposed between the middle part of in situ right ITA and distal part of in situ RGEA grafts used previously, to supply blood flow from the right ITA graft to the posterior descending coronary artery. The patient was discharged without any complication on the 9th postoperative day. One year after redo surgery, the patient had no symptoms of angina and coronary angiogram was performed and revealed patent grafts, including an interposed saphenous vein graft (Fig. 3A). The myocardial SPECT test was also performed and demonstrated that there was no perfusion decrease including the inferior wall (Fig. 3B).

DISCUSSION

Reoperations for coronary artery disease have been increased due to the increased number of isolated CABG [1]. The Society of Thoracic Surgeons statistics indicated that nearly 5% of the current CABG procedures done in the US were repeat surgical revascularization [2]. Angiographic indications for reoperation are progression of native coronary atherosclerosis, previous graft failure or a combination of both. One previous study demonstrated that 4 out of 400 patients who underwent CABG using the RGEA graft needed percutaneous interventions due to the RGEA graft failure during postoperative follow-up of 22±11 months [3]. One of those 4 patients required an angioplasty for a newly developed stenosis of the celiac trunk. In the present case, an indication for reoperation was recurred angina symptom even in the presence of all patent grafts. The patient had been free of angina, and the angiographic and myocardial SPECT follow-up studies revealed no abnormal findings at postoperative 5 years. When the patient suffered from recurred angina at postoperative 7 years, coronary angiography showed a faint visualization of the in situ RGEA graft associated with significant stenosis at the os of the celiac axis. The 10-year follow-up myocardial SPECT test demonstrated a newly developed reversible perfusion decrease in the inferior wall.

The prevalence of celiac axis stenosis was 7.3% in a Korean population although it was lower than the previously reported incidence of celiac axis stenosis in Western populations ranged from 12.5% to 24% [4]. In the present case, significant celiac ostial stenosis was newly detected in a pa-
Patient with recurred angina. Celiac artery stenting could be an alternative option in such a case. However, we performed a redo operation because celiac axis stenting was associated with a high incidence of late restenosis [5]. There are several strategies in redo CABG. The aorta or another in situ arterial graft could be chosen as a blood source. Alternatively, patent in situ grafts used previously may be re-used as an inflow conduit [6]. With regards to our patient, the 3 in situ arterial grafts had already been used. We used the patent in situ right ITA graft as an inflow conduit. The saphenous vein graft was interposed between the middle part of right ITA and distal part of in situ RGEA grafts used previously.

REFERENCES