유통중 온도관리가 방울토마토의 품질과 저장성에 미치는 영향

Effect of Temperature on the Quality and Storability of Cherry Tomato during Commercial Handling Condition

  • 투고 : 2012.05.01
  • 심사 : 2012.06.07
  • 발행 : 2012.06.30

초록

본 연구는 방울토마토 장거리 수출을 위한 적정 유통저장 조건을 확립하기 위하여, 온도관리가 방울토마토의 품질과 저장성에 미치는 영향에 따른 외관상 품질변화와 저장성에 미치는 영향에 대해 알아보고자 연구를 진행하였다. 소과종인 '유니콘' 품종을 대상으로, 저장 전 3일간 각각 5, 11, $25^{\circ}C$에서 저장한 후, 각각 $5^{\circ}C$$11^{\circ}C$에서 25일간 저장하였다. 저장온도는 봄, 여름, 겨울철 외부 평균온도에 준하여 설정하였다. 저장 최종일에 $25^{\circ}C/11^{\circ}C$(저장 전 온도/저장온도) 처리구에서 높은 호흡률과 에틸렌 발생량을 나타냈고, $5^{\circ}C/5^{\circ}C$ 처리구에서 가장 낮은 호흡률과 에틸렌 발생량을 나타냈다. $5^{\circ}C/5^{\circ}C$ 처리구가 가장 높은 시장성을 나타냈고, 저장 23일간 외관상 품질의 부패 현상은 나타나지 않았다. 생체중 감소율은 저장 전 $5^{\circ}C$$11^{\circ}C$에서 저장된 처리구에서 대체적으로 느리게 증가하였다. 저장 최종일에 $5^{\circ}C/5^{\circ}C$ 처리구와 $5^{\circ}C/11^{\circ}C$ 처리구가 다른 처리구보다 높은 경도와 당도를 나타냈으며, 또한 $5^{\circ}C/5^{\circ}C$ 처리구는 다른 처리구에 비해 높은 비타민 C 농도를 나타냈다. 저장 중 과숙 되어짐에 모든 처리구에서 titratable acidity가 대체적으로 증가하였으나, 과숙이 어느 정도 진행된 후에는 오히려 감소하는 경향이 보였다. 이상의 결과로, $5^{\circ}C$ 3일 저장 후, $5^{\circ}C$로 25일 저장하는 것이 바람직하며, 담적색기의 과실을 저장 유통하는 것이 저장성과 시장성에 적합한 것으로 판단된다. 또한 여름철 $25^{\circ}C$ 이상의 고온에서 저장 하였음에도 $11^{\circ}C$에서 저장하여 2주간의 저장이 가능하여, 여름철 일본 수출조건으로 적용 가능하다. 이와 같은 조건 조건의 유통조건이 이뤄진다면, 안정적인 시장경제와 소비자들에게 보다 신선한 품질의 방울토마토를 공급하는 데에 효과적일 것으로 생각된다.

This study was carried out in order to investigate the effect of temperature of treatment and storage on the longevity of 'Unicorn' tomatoes of light red maturity stage during commercial handling conditions encountered while exporting over long distances. Tomato stored at $5^{\circ}C$ and $11^{\circ}C$ temperature with 85% relative humidity by pre-treating handling temperature that was using from field to before shipment as a winter temperature $5^{\circ}C$, spring temperature $11^{\circ}C$ and summer temperature $25^{\circ}C$ for 3 days. On the final storage day, $25^{\circ}C/11^{\circ}C$ (treated/stored) tomatoes showed the highest respiration and ethylene production rate; whereas the lowest respiration and ethylene production rate was found for $5^{\circ}C/5^{\circ}C$ treated and stored tomatoes. Tomatoes treated and stored at $5^{\circ}C/5^{\circ}C$ showed higher marketability, without evidence of fungal rot, decay or spots for 23 days. The fresh weight loss under all treatment conditions increased gradually during $5^{\circ}C$ and $11^{\circ}C$ storage temperatures. The higher firmness and soluble solids were determined from $5^{\circ}C/5^{\circ}C$ and $5^{\circ}C/11^{\circ}C$ treated and stored tomatoes repectively, than from others tomatoes on the final day of storage. In addition, $5^{\circ}C/5^{\circ}C$ tomatoes showed higher vitamin C contents than tomatoes stored at other temperatures, on the final day of storage. As the ripening and storage period progressed, the titratable acidity increased, but declined (P < 0.05) thereafter, due to over ripe tomatoes under all treatment conditions. These results show that $5^{\circ}C/5^{\circ}C$ treated and stored light red maturity stages of 'Unicorn' tomatoes are optimum to export because they show the highest storability and marketability. Moreover, the marketability of light red maturity stage of 'Unicorn' tomato maintained for 2 weeks in $25^{\circ}C/11^{\circ}C$ treated and stored temperature that might be the export temperature from Korea to Japan in summer season. This research result could be useful in helping tomato growers and exporters to get optimum market value by satisfying the buyer and consumer with a fresher product.

키워드

참고문헌

  1. Baldwin, E.A., M.O. Nisperos-Carriedo, and M.G. Moshonas. 1991. Quantitative analysis of flavor and other volatiles and for certain constituents of twoto-mato cultivars during ripening. J. Amer. Soc. Hort. Sci. 116(2):265-269.
  2. Burg, S.P. 2004. Postharvest Physiology and Hypobaric Storage of Fresh Produce. CABI Publishing, Wallingford, UK. B.
  3. Castro, L.R., C. Vigneault, M.T. Charles, and L.A.B. Cortez. 2005. Effect of cooling delay and cold-chain breakage on 'Santa Clara' tomato. J. Food Agr. Envir. 3:49-54.
  4. Cantwell, M., X. Nie, and G. Hong. 2009. Impact of Storage Conditions on Grape Tomato Quality. 6th ISHS Postharvest Symposium. Antalya, Turkey. April 8-12.
  5. Dalal, K.B., D.K. Salunkhe, A.A. Boe, and L.E. Olson. 1965. Certain physiological and biochemical changes in the developing tomato fruit. J. Food Sci. 30:504-508 https://doi.org/10.1111/j.1365-2621.1965.tb01793.x
  6. Hardenburg, R.E., A.E. Warada, and C.V. Wang. 1986. The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks, Agriculture Handbook No 66, USDA, Washington. D.C.
  7. Islam, M.Z., Y.S. Kim, and H.-M. Kang. 2011. Effect of breathable film for modified atmosphere packaging material on the quality and storability of tomato in long distance export condition. Journal of Bio-Environment Control, 20(3):221-226.
  8. Javanmardi, J. and C. Kubota. 2006. Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biology and Technology 41:151-155. https://doi.org/10.1016/j.postharvbio.2006.03.008
  9. Kader, A.A. 1986. Effects of postharvest handling procedures on tomato quality. Acta Horticulturae 190: 209-221.
  10. Kader, A.A. 2002. Postharvest Technology of Horticultural Crops. Publication 3311, USA.
  11. Kays J. Stanley and Paull E. Robert. 2004. Postharvest Biology. Exon Press, Athens, A.
  12. Krishnamoorthy, H.N. 1982. Plant Growth Substances (Including Applications in Agriculture). McGraw-Hill Education, New Ed edition, New Delhi.
  13. Lee, S.K. and A.A. Kader. 2000. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology 20:207-220. https://doi.org/10.1016/S0925-5214(00)00133-2
  14. Meir, S., L. Rubin, G. Zauberman, and Y. Fuchs. 1992. Changes in fluorescent lipid peroxidation products of room-ripened ans vine-ripened tomato fruits in relation to other ripening parameters. Postharvest Biol. Technol. 2(2):125-135. https://doi.org/10.1016/0925-5214(92)90015-H
  15. Mohammed, M., L.A. Wilson, and P.L. Gomes. 1999. Postharvest sensory and physiochemical attributes of processing and non-processing tomato cultivar. J. Food Qual 22:167-182. https://doi.org/10.1111/j.1745-4557.1999.tb00549.x
  16. Polderdijk, J.J., L.M.M. Tijskens, J.E. Robbers, and H.C.P.M. Van der Valk. 1993. Predictive model of keeping quality of tomatoes. Postharvest Biology and Technology 2:179-185. https://doi.org/10.1016/0925-5214(93)90046-6
  17. Roberts, K.P., S.A. Sargent, and A.J. Fox. 2002. Effects of storage temperature on ripening and postharvest quality of grape and mini-pear tomatoes. Proc. Fla. State Hort. Soc. 115:80-84.
  18. Stevens, M.A., A.A. Kader, and M. Albright. 1979. Potential for increasing tomato flavor via increasing sugar and acid content. J. Amer. Soc. Hort. Sci. 104(1):40-42.
  19. Tzortzakis, N., A. Borland, I. Singleton, and J. Barnes. 2007. Impact of atmospheric ozone-enrichment on quality-related attributes of tomato fruit. Postharvest Biology and Technology 45:317-325. https://doi.org/10.1016/j.postharvbio.2007.03.004
  20. Wareham, P.D. and K.C. Persaud. 1999. On-line analysis of sample atmospheres using membrane inlet mass spectrometry as a method of monitoring vegetable respiration rate. Anal. Chim. Acta 394:43-54. https://doi.org/10.1016/S0003-2670(99)00266-4
  21. Workneh, T.S. and G. Osthoff. 2010. A review on integrated agro-technology of vegetables. Review, African Journal of Biotechnology 9(54):9307-9327.
  22. Znidarcic, D. and T. Pozrl. 2006. Comparative study of quality changes in tomato cv. 'Malike' (Lycopersicon esculentum Mill.) whilst stored at different temperatures. Acta agriculturae Slovenica, 87 - 2, September 2006 str. 235-243.