파워게이팅과 전압레벨조절을 이용하여 누설전류를 줄인 SRAM

A Low Leakage SRAM Using Power-Gating and Voltage-Level Control

  • 양병도 (충북대학교 전자정보대학) ;
  • 천유소 (충북대학교 전자정보대학)
  • Yang, Byung-Do (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Cheon, You-So (College of Electrical and Computer Engineering, Chungbuk National University)
  • 투고 : 2012.05.31
  • 심사 : 2012.07.16
  • 발행 : 2012.08.25

초록

본 논문에서는 파워게이팅과 전압레벨조절을 이용하여 누설전류를 줄인 SRAM을 제안하였다. 제안된 파워게이팅 기법은 데이터를 저장하지 않은 메모리 셀 블록의 전력공급을 차단함으로써 누설전류를 크게 감소시키고, 제안된 전압레벨조절 기법은 데이터가 저장된 메모리 셀 블록의 접지전압을 올림으로써 누설전류를 줄여준다. $4K{\times}8$비트 SRAM 칩은 $0.13{\mu}m$ CMOS 공정으로 제작되었고 VDD=1.2V로 동작하였다. 메모리 사용률이 0~100%에 대하여, 동작 모드에서의 누설전류는 $1.23{\sim}9.87{\mu}W$이고 대기 모드에서 누설전류는 $1.23{\sim}3.01{\mu}W$였다. 대기 모드 동안에, 제안된 SRAM의 누설전류는 기존의 SRAM의 12.5~30.5%로 감소하였다.

This letter proposes a low-leakage SRAM using power-gating and voltage-level control. The power-gating scheme significantly reduces leakage power by shutting off the power supply to blank memory cell blocks. The voltage-level control scheme saves leakage power by raising the ground line voltage of SRAM cells and word line decoders in data-stored memory cell blocks. A $4K{\times}8bit$ SRAM chip was fabricated using a 1.2V $0.13{\mu}m$ CMOS process. The leakage powers are $1.23{\sim}9.87{\mu}W$ and $1.23{\sim}3.01{\mu}W$ for 0~100% memory usage in active and sleep modes, respectively. During the sleep mode, the proposed SRAM consumes 12.5~30.5% leakage power compared to the conventional SRAM.

키워드

참고문헌

  1. K. Nii , Y. Tsukamoto, T. Yoshizawa, S. Imaoka, and H. Makino, "A 90nm Dual-Port SRAM with $2.04{\mu}m2$ 8T-Thin Cell Using Dynamically- Controlled Column Bias Scheme," in IEEE ISSCC Dig. Tech. Papers, Feb. 2004, pp. 508-543.
  2. Y. Wang, H. Ahn, U. Bhattacharya, T. Coan, F. Hamzaoglu, W. Hafez, C.-H. Jan, P. Kolar, S. Kulkarni, J. Lin, Y. Ng, I. Post, L. Wei, Y. Zhang, K. Zhang, and M. Bohr, "A 1.1GHz $12{\mu}$ A/Mb-Leakage SRAM Design in 65nm Ultra-Low-Power CMOS Technology With Integrated Leakage Reduction for Mobile Applications," IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 172-179, Jan. 2008. https://doi.org/10.1109/JSSC.2007.907996
  3. S. M. Jahinuzzaman, J. S. Shah, D. J. Rennie, and M. Sachdev, "Design and Analysis of A 5.3-pJ 64-kb Gated Ground SRAM With Multiword ECC," IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2543-2553, Sep. 2009. https://doi.org/10.1109/JSSC.2009.2021088
  4. T. Enomoto, Y. Oka, and H. Shikano, "A self-controllable voltage level (SVL) circuit and its low-power high-speed CMOS circuit applications," IEEE J. Solid-State Circuits, vol. 38, pp. 1220-1226, July 2003. https://doi.org/10.1109/JSSC.2003.813248
  5. H. Chung-Hsien, C. Tung-Shuan, and H. Wei, "Distributed data-retention power gating techniques for column and row co-controlled embedded SRAM," in IEEE Int. Work.: Memory Technology, Design and Testing, pp. 129-134, Aug. 2005.
  6. C. Kim, J. Kim S. Mukhopadhyay, and K. Roy, "A forward body-biased low-leakage SRAM cache: device, circuit and architecture considerations," IEEE Trans. on VLSI Systems, vol. 13, pp. 349-357, Mar. 2005. https://doi.org/10.1109/TVLSI.2004.842903
  7. 양병도, 이용규, "공급전압 전하재활용을 이용한 저전력 SRAM," 전자공학회 논문지, 제 46권, SD편, 제 5호, 페이지 25-31, 2009년 5월.