DOI QR코드

DOI QR Code

Signal compensation by the light scattering of sample aerosols in ICP-AES

ICP-AES에서 에어로졸의 광산란에 의한 신호의 보정

  • Yeon, Pyung-Hum (Department of Chemistry Education, Korea National University of Education) ;
  • Pak, Yong-Nam (Department of Chemistry Education, Korea National University of Education)
  • 연평흠 (한국교원대학교 화학교육학과) ;
  • 박용남 (한국교원대학교 화학교육학과)
  • Received : 2012.02.21
  • Accepted : 2012.07.23
  • Published : 2012.08.25

Abstract

Analytical signal from ICP was compensated by the light scattering of sample aerosols. Reference scattering signal was generated by a He-Ne or diode laser, monitored for the amount of aerosol producing and used for the compensation of analytical signals. The result showed that significant improvement in precision could be achieved for the short-term signal (within 1 minute) from 3.4% to 0.9% RSD in signal and 14.9% to 4.2% for the long-term (10 minutes) for Be, Pb and Co. This method is very useful not only for the pulse type but for continuous type signals especially when a nebulizer is unstable. To improve long-term precision, higher stability is required in the scattering cell and detector as well as the reduction of noise from the line between a nebulizer and plasma.

시료 에어로졸에 의한 광산란 신호를 이용하여 ICP 분석신호를 보정하였다. 자체 제작한 초음파 분무기에서 발생되는 에어로졸에 대하여 다이오드나 He-Ne 레이저를 사용하여 광산란신호를 얻고 이를 기준으로 하여 분석신호의 변동에 대하여 보정하였다. 그 결과 Be, Pb 및 Co의 경우에 short-term (1분 이하)에 대한 신호의 RSD가 기존의 평균 3.4% 에서 0.9% RSD 이하로 큰 개선이 되었으며, 10분 정도의 long-term안정도는 14.9%에서 4.2%로 개선되었다. 이 방법은 펄스형태의 시료도입뿐 아니라 연속적 분무에서도 분무기의 안정성이 부족한 경우, 정밀도의 개선에 매우 유용하다. Long-term의 안정도 개선을 위해서는 광산란셀에서의 안정도 및 검출기의 잡음개선과 분무장치와 플라즈마 사이에서의 에어로졸 응축등에 의한 잡음의 개선이 필요한 것으로 보인다.

Keywords

References

  1. V. Hans, M. Luc and D. J. Richard, J. Anal. At. Spectrom., 9, 815-921 (1994). https://doi.org/10.1039/ja9940900815
  2. S. H. Nam, J. S. Lim and A. Montaser, J. Anal. At. Spectrom., 9, 1357-1364 (1994). https://doi.org/10.1039/ja9940901357
  3. S. Greenfield and A. Montaser, 'Inductively Coupled Plasma in Analytical Atoomic Spectrometry', 2nd Ed., ch4, 187, A. Montaser, D. W. Golightly, ed., VCH, New York, 1992.
  4. R. F. Browner, 'Inductively Coupled Plasma Emission Spectroscopy', Part, ch8, 244, P. W. J. M. Boumans, ed., John Wiley, New York, 1987.
  5. E. Parades, J. Bosque, J. Mermet and J. Todoli, Spectrochim Acta B, 65, 908-917 (2011).
  6. H. Cheng, X. Yin, X. Wang and H. Shen, Talanta, 85, 794-799 (2011). https://doi.org/10.1016/j.talanta.2011.04.075
  7. A. Tyburska, K. Jankowski, A. Ramsza, E. Reszke, M. Strzelec and A. Andrzejc, J. Anal. At. Spectrom., 25, 210-214 (2010). https://doi.org/10.1039/b916729c
  8. M. Hoenig, H. Docekalov'a and H. Baeten, J. Anal. At. Spectrom., 13, 195-199 (1998). https://doi.org/10.1039/a708142a
  9. D. H. Sun, K. W. James and P. M. Thomas, J. Anal. At. Spectrom., 12, 1675-1683 (1997).
  10. B. Budic, J. Anal. At. Spectrom., 13, 869-878 (1998). https://doi.org/10.1039/a801332b
  11. G. J. Schmidt and W. Slavin, Anal. Chem., 54(14), 2491- 2495 (1982). https://doi.org/10.1021/ac00251a020
  12. F. J. Feldman, Anal. Chem., 42, 719-725 (1970). https://doi.org/10.1021/ac60289a011
  13. H. Uchida, Y. Norjiri, H. Haraguchi and K. Fuwa, Anal. Chim. Acta, 123, 57-69 (1981). https://doi.org/10.1016/S0003-2670(01)83158-5
  14. C. Vogiatzis and G. Zachariadis J. Anal. At. Spectrom., 26, 2030-2038 (2011). https://doi.org/10.1039/c1ja10133a
  15. G. Horlick, Spectrochim Acta B, 37(12), 1037-1046 (1982). https://doi.org/10.1016/0584-8547(82)80033-5
  16. F. Fryer, J. Lear, D. Bishop, D. Hare, T. Rawling, L. Kirkup, A. McDonagh and P. Doble, J. Anal. At. Spectrom., 26, 1494-1501 (2011). https://doi.org/10.1039/c0ja00267d
  17. S. A. Myers and D. H. Tracy, Spectrochim. Acta B, 38, 1227-1234 (1983). https://doi.org/10.1016/0584-8547(83)80066-4
  18. J. Marshall, G. Rodgers and W. C. Campbell, J. Anal. At. Spectrom., 13, 241-244 (1988).
  19. N. Furuta, Anal Sci., 18, 1105-1113 (2002). https://doi.org/10.2116/analsci.18.1105
  20. H. Pang, D. R. Wiederin, R. S. Houk and E. S. Yeung, Anal. Chem., 63, 390-397 (1991). https://doi.org/10.1021/ac00004a017
  21. R. J. Watling, J. Anal. At. Spectrom., 13, 927-934 (1998). https://doi.org/10.1039/a800337h
  22. T. Tomokazu, Y. Kensuke, N. Tsutomu and K. Hiroshi, Anal. Sci., 11, 967-977 (1995). https://doi.org/10.2116/analsci.11.967
  23. S. A. Baker, B. W. Smith and J. D. Winefordner, Appl. Spectrosc., 52, 154-161 (1998). https://doi.org/10.1366/0003702981942492
  24. P. Yeon, Y. Cho and Y. Pak, Bull. Kor. Chem. Soc., 20, 1277-1284 (1999).
  25. L. Qinghong and M. B. Ramon, J. Microchemical., 54, 129-143 (1996). https://doi.org/10.1006/mchj.1996.0086
  26. G. H. Vickers, D. A. Wilson and G. M. Hieftje, J. Anal. At. Spectrom., 4, 749-755 (1989). https://doi.org/10.1039/ja9890400749
  27. J. Takahashi and R. Hara, Anal. Sci., 4, 331-339 (1988). https://doi.org/10.2116/analsci.4.331
  28. A. R. Date and A. L. Gray, 'The Application of Inductively Coupled Plasma Mass Spectrometry' Ed., 224, Champan & Hall, London, 1988.
  29. P. D. Goulden and D. H. Anthony, J. Anal. Chem., 56, 2327-2334 (1984). https://doi.org/10.1021/ac00277a014
  30. T. Tanaka, K. Yamamoto, T. Nomizu and H. Kawaguchi, Anal. Sci., 11, 967-977 (1995). https://doi.org/10.2116/analsci.11.967