DOI QR코드

DOI QR Code

Whole Genome Analysis of Human Papillomavirus Genotype 11 from Cervix, Larynx and Lung

  • Published : 2012.06.30

Abstract

The prevalence of human papillomavirus genotypes differs in various target organs. HPV16 is the most prevalent genotype in the cervix while genotypes 6 and 11 are highly prevalent in skin and aero-digestive tract infections. In this study HPV11 positive specimens were selected from cervix, larynx and lung biopsy tissue to analyze the whole genome by PCR and direct sequencing. Five HPV11 whole genomes were characterized, consisting of two cervical specimens, two laryngeal specimens and one lung specimen. The results showed high homology of HPV11 in these organs. Phylogenetic analysis showed that all HPV11 derived from various organs belonged to the same lineage. Molecular characterization and functional studies can further our understanding of virulence, expression or transmission. Additional studies on functional protein expression at different organ sites will also contribute to our knowledge of HPV infection in various organs.

Keywords

References

  1. Band V, Dalal S, Delmolino L, Androphy EJ (1993). Enhanced degradation of p53 protein in HPV- 6 and BPV-1 E6-immortalized human mammary epithelial cells, EMBO J, 12, 1847-52.
  2. Barr E, Tamms G (2007). Quadrivalent human papillomavirus vaccine. Clin Infect Dis, 45, 609-17. https://doi.org/10.1086/520654
  3. Broccolo F, Drago F, Careddu AM, et al (2005). Additional evidence that pityriasis rosea is associated with reactivation of human herpesvirus-6 and -7. J Invest Dermatol, 124, 1234-40. https://doi.org/10.1111/j.0022-202X.2005.23719.x
  4. Burd EM (2003). Human papillomavirus and cervical cancer. Clin Microbiol Rev, 16, 1-17. https://doi.org/10.1128/CMR.16.1.1-17.2003
  5. Chan SY, Delius H, Halpern AL, Bernard HU (1995). Analysis of genomic sequences of 95 papillomavirus types: uniting typing, phylogeny, and taxonomy. J Virol, 69, 3074-83.
  6. Chansaenroj J, Lurchachaiwong W, Termrungruanglert W, et al (2010). Prevalence and genotypes of human papillomavirus among Thai women. Asian Pac J Cancer Prev, 11, 117-22.
  7. Chin MT, Broker TR, Chow LT (1989). Identification of a novel constitutive enhancer element and an associated binding protein: implications for human papillomavirus type 11 enhancer regulation. J Virol, 63, 2967-76.
  8. Chinchai T, Chansaenroj J, Junyangdikul P, (2011). Comparison between direct sequencing and INNO-LiPA methods for HPV detection and genotyping in Thai Women. Asian Pac J Cancer Prev, 12, 989-94.
  9. Derkay CS (2001). Recurrent respiratory papillomatosis. Laryngoscope, 111, 57-69. https://doi.org/10.1097/00005537-200101000-00011
  10. Dickens P, Srivastava G, Loke SL, Larkin S (1991). Human papillomavirus 6, 11, and 16 in laryngeal papillomas. J Pathol, 165, 243-6. https://doi.org/10.1002/path.1711650308
  11. Dilorenzo TP, Tamsen A, Abramson AL, Steinberg BM (1992). Human papillomavirus type 6a DNA in the lung carcinoma of a patient with recurrent laryngeal papillomatosis is characterized by a partial duplication. J Gen Virol, 73, 423-8. https://doi.org/10.1099/0022-1317-73-2-423
  12. Donne AJ, Hampson L, Homer JJ, Hampson IN (2010). The role of HPV type in Recurrent Respiratory Papillomatosis. Int J Pediatr Otorhinolaryngol, 74, 7-14. https://doi.org/10.1016/j.ijporl.2009.09.004
  13. D'Souza G, Dempsey A (2011). The role of HPV in head and neck cancer and review of the HPV vaccine. Prev Med, 1, 5-11.
  14. Gall T, Kis A, Fehér E, et al (2011). Virological failure of intralesional cidofovir therapy in recurrent respiratory papillomatosis is not associated with genetic or epigenetic changes of HPV11: complete genome comparison of sequential isolates. Antiviral Res, 92, 356-8. https://doi.org/10.1016/j.antiviral.2011.09.007
  15. Gallagher TQ, Derkay CS (2009). Pharmacotherapy of recurrent respiratory papillomatosis: an expert opinion. Expert Opin Pharmacother, 10, 645-55. https://doi.org/10.1517/14656560902793530
  16. Gissmann L, Wolnik L, Ikenberg H, et al (1983). Human papillomavirus types 6 and 11 DNA sequences in genital and laryngeal papillomas and in some cervical cancers. Proc Natl Acad Sci USA, 80, 560-3. https://doi.org/10.1073/pnas.80.2.560
  17. Goon P, Sonnex C, Jani P, et al (2008). Recurrent respiratory papillomatosis: an overview of current thinking and treatment. Eur Arch Otorhinolaryngol, 265, 147-51. https://doi.org/10.1007/s00405-007-0546-z
  18. Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic acids symp. Ser, 41, 95-8.
  19. Hebner CM, Laimins LA (2006). Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol, 16, 83-97. https://doi.org/10.1002/rmv.488
  20. Heinzel PA, Chan SY, Ho L, et al (1995). Variation of human papillomavirus type 6 (HPV-6) and HPV-11 genomes sampled throughout the world. J Clin Microbiol, 33, 1746-54.
  21. Hobbs CGL, Sterne JAC, Bailey M, et al (2006). Human papillomavirus and head and neck cancer: a systematic review and meta-analysis. Clin Otolaryngol, 31, 259-66. https://doi.org/10.1111/j.1749-4486.2006.01246.x
  22. Hubert WG (2005). Variant upstream regulatory region sequences differentially regulate human papillomavirus type 16 DNA replication throughout the viral life cycle. J Virol, 79, 5914-22. https://doi.org/10.1128/JVI.79.10.5914-5922.2005
  23. Kreimer AR, Clifford GM, Boyle P, Franceschi S (2005). Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomarkers Prev, 14, 467-75. https://doi.org/10.1158/1055-9965.EPI-04-0551
  24. Lacey CJ, Lowndes CM, Shah KV (2006). Chapter 4: Burden and management of non-cancerous HPV-related conditions: HPV-6/11 disease. Vaccine, 24, 35-41. https://doi.org/10.1016/j.vaccine.2006.06.015
  25. Lindman JP, Lewis LS, Accortt N, Wiatrak BJ (2005). Use of the Pediatric Quality of Life Inventory to assess the health-related quality of life in children with recurrent respiratory papillomatosis. Ann Otol Rhinol Laryngol, 114, 499-503. https://doi.org/10.1177/000348940511400701
  26. Major T, Szarka K, Sziklai I, et al (2005). The characteristics of human papillomavirus DNA in head and neck cancers and papillomas. J Clin Pathol, 58, 51-5. https://doi.org/10.1136/jcp.2004.016634
  27. Maloney EM, Unger ER, Tucker RA, et al (2006). Longitudinal measures of human papillomavirus 6 and 11 viral loads and antibody response in children with recurrent respiratory papillomatosis. Arch Otolaryngol Head Neck Surg, 132, 711-5. https://doi.org/10.1001/archotol.132.7.711
  28. Reeves WC, Ruparelia SS, Swanson KI, et al (2003). National registry for juvenile-onset recurrent respiratory papillomatosis. Arch Otolaryngol Head Neck Surg, 129, 976-82. https://doi.org/10.1001/archotol.129.9.976
  29. Rimell FL, Shoemaker DL, Pou AM, et al (1997). Pediatric respiratory papillomatosis: prognostic role of viral typing and cofactors. Laryngoscope, 107, 915-8. https://doi.org/10.1097/00005537-199707000-00015
  30. Rubben A, Beaudenon S, Favre M, et al (1992). Rearrangements of the upstream regulatory region of human papillomavirus type 6 can be found in both Buschke-Lowenstein tumours and in condylomata acuminate. J Gen Virol, 73, 3147-53. https://doi.org/10.1099/0022-1317-73-12-3147
  31. Schneider-Maunoury S, Croissant O, Orth G (1987). Integration of human papillomavirus type 16 DNA sequences: a possible early event in the progression of genital tumors, J Virol, 61, 3295-8.
  32. Silverberg MJ, Thorsen P, Lindeberg H, et al (2003). Condyloma in pregnancy is strongly predictive of juvenile-onset recurrent respiratory papillomatosis. Obstet Gynecol, 101, 645-52. https://doi.org/10.1016/S0029-7844(02)03081-8
  33. Stamataki S, Nikolopoulos TP, Korres S, et al (2007). Juvenile recurrent respiratory papillomatosis: still a mystery disease with difficult management. Head Neck, 29, 155-62. https://doi.org/10.1002/hed.20491
  34. Syrjanen K, Syrjanen S, Lamberg M, et al (1983). Morphological and immunohistochemical evidence suggesting human papillomavirus (HPV) involvement in oral squamous cell carcinogenesis. Int J Oral Surg, 12, 418-24. https://doi.org/10.1016/S0300-9785(83)80033-7
  35. Tamura K, Dudley J, Nei M, Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 24, 1596-99. https://doi.org/10.1093/molbev/msm092
  36. Tiersma ES, Van der Lee ML, Garssen B, et al (2005). Psychosocial factors and the course of cervical intraepithelial neoplasia: a prospective study. Gynecol Oncol, 97, 879-86. https://doi.org/10.1016/j.ygyno.2005.03.003
  37. Uversky VN, Roman A, Oldfield CJ, Dunker AK (2006). Protein Intrinsic Disorder and Human Papillomaviruses: Increased Amount of Disorder in E6 and E7 Oncoproteins from High Risk HPVs. J Proteome Res, 5, 1829-42. https://doi.org/10.1021/pr0602388
  38. Wiatrak BJ, Wiatrak DW, Broker TR, Lewis L (2004). Recurrent respiratory papillomatosis: a longitudinal study comparing severity associated with human papilloma viral types 6 and 11 and other risk factors in a large pediatric population. Laryngoscope, 114, 1-23.
  39. Zehbe I, Wilander E (1996). Two consensus primer systems and nested polymerase chain reaction for human papillomavirus detection in cervical biopsies: A study of sensitivity. Hum Pathol, 27, 812-5. https://doi.org/10.1016/S0046-8177(96)90454-2

Cited by

  1. Genomic differences in the background of different severity in juvenile-onset respiratory papillomatoses associated with human papillomavirus type 11 vol.202, pp.5, 2013, https://doi.org/10.1007/s00430-013-0297-y
  2. Human Papillomavirus Type 6 and 11 Genetic Variants Found in 71 Oral and Anogenital Epithelial Samples from Australia vol.8, pp.5, 2013, https://doi.org/10.1371/journal.pone.0063892
  3. Global Genomic Diversity of Human Papillomavirus 11 Based on 433 Isolates and 78 Complete Genome Sequences vol.90, pp.11, 2016, https://doi.org/10.1128/JVI.03149-15