DOI QR코드

DOI QR Code

Investigation of the Radiative Heating from Aircraft Plume with Particles

입자에 의한 항공기 플룸의 열복사 가열에 관한 연구

  • Received : 2012.03.19
  • Accepted : 2012.08.13
  • Published : 2012.09.01

Abstract

The finite volume method for radiation is applied for the analysis of radiative base heating by SE and PE of the aircraft exhaust plume. The exhaust plume is considered as an absorbing, emitting, and scattering medium, while the base plane is assumed to be cold and black. The radiative properties of non-gray gases are obtained through the WSGGM, and the particle is modelled as spheres. The present method is validated by comparing the results with those of the backward Monte-Carlo method and then the radiative base heating characteristics are analyzed by changing such various parameters as particle concentration, temperature, and scattering phase function. The results show that the radiative heat flux coming into the base plane decreases with altitude and distance, but it increases as the particle temperature increases. The forward scattering of particles increases PE while it decreases SE.

유한체적법을 이용하여 설정된 가상의 노즐 조건에 따라 비행체 배기플룸의 SE와 PE에 의한 열복사 저부가열 해석 연구를 수행하였다. 저부면에서의 복사열유속을 얻기 위해 배기플룸은 흡수, 방사 및 산란하는 매질을 고려하였다. 저부면은 차가운 흑체이고 비회색가스와 입자의 복사 물성치는 회색가스가중합법(WSGGM)을 사용하였다. 후방 몬테카를로 방법을 사용한 기존의 연구와 비교하여 검증한 후, 입자의 농도, 온도, 그리고 등방성 또는 이방성 산란에 따른 복사저부가열을 해석하였다. 그 결과, 복사열유속은 노즐 출구와의 거리가 멀어지거나 비행 고도가 증가할수록 감소하고 입자의 온도가 높아질수록 복사열유속은 증가한다. 또한 전방산란은 PE를 증가시키고 후방산란은 SE를 증가시켰다.

Keywords

References

  1. Baek, S. W. and Kim, M. Y., "Analysis of Radiative Heating of a Rocket Plume Base with the Finite-Volume Method," Int. J. Heat Mass Transfer, Vol. 40, No. 7, May. 1997, pp. 1501-1508. https://doi.org/10.1016/S0017-9310(96)00257-8
  2. Sonawane, H. R. and Mahulikar, S. P., "Tacktical Air Warfare: Generic Model for Aircraft Susceptibility to Infrared Guided Missiles," J. Aerospace Sci. Tech., Vol. 16, No. 4, Jun. 2011, pp. 249-260.
  3. Yi, K. J., Baek, S. W., Lee, S. N., Kim, M. Y., and Kim, W. C., "Effects of Nozzle Characteristics on the Rear Fuselage Temperature Distribution," Trans. of the KSAS, Vol. 39, No. 12, Nov. 2011, pp. 1141-1149.
  4. Mahulikar, S. P., Potnuru, S. K., and Rao, G. A., "Study of Sunshine, Skyshine, and Earthshine for Aircraft Infrared Detection," Journal of Optics A: Pure and Applied Optics, Vol. 11, No. 4, Apr. 2009, art. no. 045703.
  5. Tien, C. L. and Abu-Romia, M. M., "A Method of Calculating Rocket Plume Radiation to the Base Region," AIAA J. Spacecraft Rockets, Vol. 1, No. 4, Jul-Aug. 1964, pp. 433-435. https://doi.org/10.2514/3.27675
  6. Choi, H. S. and Kim, Y. M., "Navier-Stokes Analysis of Supersonic Rocket Base-Flow/Plume Interaction," Trans. of the KSAS, Vol. 29, No. 1, Feb. 2001, pp. 16-24.
  7. Yu, M. J., Baek, S. W., and Park, J. H., "An Extension of the Weighted Sum of Gray Gases Non-Gray Gas Radiation Model to a Two Phase Mixture of Non-Gray Gas with Particles," Int. J. Heat Mass Transfer, Vol. 43, No. 10, May. 2000, pp. 1699-1713. https://doi.org/10.1016/S0017-9310(99)00265-3
  8. Baek, S. W. and Kim, M. Y., "Modification of the Discrete-Ordinates Method in an Axisymmetric Cylindrical Geometry," Numer. Heat Transfer, B, Vol. 31, No. 3, Apr. 1997, pp. 313-326. https://doi.org/10.1080/10407799708915112
  9. Kim, M. Y., Yu, M. J., Cho, J. H., and Baek, S. Y., "Influence of Particles on Radiative Base Heating from the Rocket Exhaust Plume," AIAA J. Spacecraft Rockets, Vol. 45, No. 3, May-Jun. 2008, pp. 454-458. https://doi.org/10.2514/1.32229
  10. Nelson, H. F., "Backward Monte-Carlo Modeling for Rocket Plume Base Heating," AIAA J. Thermophy. Heat Transfer, Vol. 6, No. 3, Jul-Sep. 1992, pp. 556-558. https://doi.org/10.2514/3.400
  11. Chui, E. H., Hughes, P. M. J., and Raithby, G. D., "Implementation of the Finite Volume Method for Calculating Radiative Transfer in a Pulverized Fuel Flame," Combust. Sci. Tech., Vol. 92, Nos. 4-6, Mar. 1993, pp. 225-242. https://doi.org/10.1080/00102209308907673
  12. Byun, D., Lee, C., and Chang, S. Y., "Radiative Heat Transfer in Discretely Heated Irregular Geometry with an Absorbing, Emitting, and An-isotropically Scattering Medium Using Combined Monte-Carlo and Finite Volume Method," Trans. of the KSME(B), Vol. 28, No. 5, May. 2004, pp. 580-586. https://doi.org/10.3795/KSME-B.2004.28.5.580
  13. Boutoub, A. and Benticha, H., "Non-gray Radiation Analysis in Participating Media with the Finite Volume Method," Turkish J. Eng. Env. Sci., Vol. 30, Jan. 2006, pp. 183-192.
  14. Smith, T. F., Shen, Z. F., and Friedman, J. N., "Evaluation of Coefficients for the Weighted Sum of Gray Gases Model," ASME J. Heat Transfer, Vol. 104, No. 4, Nov. 1982, pp. 602-608. https://doi.org/10.1115/1.3245174
  15. Chai, J. C., Lee, H. S., and Patankar, S. V., "Finite-Volume Method for Radiation Heat Transfer," AIAA J. Thermophy. Heat Transfer, Vol. 8, No. 3, Jul. 1994, pp. 419-425. https://doi.org/10.2514/3.559
  16. Morizumi, S. J. and Carpenter, H. J., "Thermal Radiation from the Exhaust Plume of an Aluminized Composite Propellant Rocket," AIAA J. Spacecraft Rockets, Vol. 1, No. 5, Jan. 1964, pp. 501-507. https://doi.org/10.2514/3.27688
  17. Nelson, H. F., "Influence of Particulates on Infrared Emission from Tactical Rocket Exhausts," AIAA J. Spacecraft Rockets, Vol. 21, No. 5, Sep-Oct. 1984, pp. 425-432. https://doi.org/10.2514/3.25676
  18. Kim, T. K. and Lee, H. S., "Radiative Heat Transfer in Two-Dimensional Anisotropic Scattering Media with Collimated Incidence," J. Quant. Spectros. Radiat. Transfer, Vol. 42, No. 3, Sep. 1989, pp. 225-238. https://doi.org/10.1016/0022-4073(89)90086-1