DOI QR코드

DOI QR Code

Explosion Characteristics by Different Sizes in the Wall Surface Shape of a Water Gel Barrier

Water Gel Barrier 표면형상의 크기에 따른 폭발특성

  • Park, Dal-Jae (Dept. of Safety Engineering, Seoul National University of Science and Technology) ;
  • Kim, Nam-Il (Dept. of Safety Engineering, Graduate School of Industry, Seoul National University of Science and Technology)
  • 박달재 (서울과학기술대학교 안전공학과) ;
  • 김남일 (서울과학기술대학교 산업대학원 안전공학과)
  • Received : 2012.01.06
  • Accepted : 2012.06.27
  • Published : 2012.06.30

Abstract

Experimental investigations were carried out to examine the explosion characteristics by different sizes in the wall surface shape of a water gel barrier in an explosion chamber, 1,600 mm in length with a square cross-section of $100{\times}100\;mm^2$. The sizes in the wall surface shape were varied by using water gel barriers with a cross-section of $100{\times}200\;mm^2$ and its were varied in the bottom of the chamber away 300, 700 and 1,100 mm, respectively from the closed end of the chamber. The flame propagation images were photographed with a high speed camera and the pressure was recorded using a pressure transducer and a data acquisition system. It was found that as the size of the wall surface shape increased, the flame propagation process and the time taken to reach the maximum pressure were found to be faster. As a result, both the flame speed and the explosion overpressure increased as the size of the wall surface shape increased.

폭발챔버에서 water gel barrier의 표면형상의 크기에 따른 폭발거동 특성을 조사하기 위하여 실험적 연구를 수행하였다. 단면적 $100{\times}100\;mm^2$, 길이 1600 mm를 가지는 폭발챔버 그리고 점화원으로부터 각각 300 mm, 700 mm 및 1100 mm 떨어진 챔버 바닥면에 $100{\times}200\;mm^2$의 크기에 서로 다른 크기의 표면형상을 고려한 gel barrier를 설치할 수 있도록 제작하였다. 젤라틴 gel과 물을 혼합하여 4가지 크기의 표면형상을 가지는 water gel barrier를 제조하여 실험변수로 사용하였다. 폭발과정 동안 화염전파 과정을 가시화하기 위해 고속카메라 그리고 폭발압력 변화를 관찰하고자 압력획득시스템을 사용하였다. 실험결과, gel barrier의 표면형상의 크기가 커질수록 화염전파과정 및 최대 폭발압력 도달시간은 빠르게 진행되는 것으로 나타났으며, 화염속도 및 폭발압력 또한 증가하는 경향으로 나타났다.

Keywords

References

  1. 박달재, 김남일, "Agar Gel Barrier의 농도변화에 따른 폭발완화 특성에 관한 실험적 연구", KIGAS, 15(5), 13-16, (2011)
  2. 박달재, 김남일, "정전기 방전에너지에 따른 가솔 린-공기 혼합물의 화염전파", KIGAS, 15(3), 6-10, (2011)
  3. Nehzat, N., Gas explosion modeling for complex geometries, Ph.D. Thesis, University of New South Wales, Sydney, Australia, (1998).
  4. Park, D.J. and Lee, Y.S., "A comparison on predictive models of gas explosions", Korean Journal of Chemical Engineering, 26(2), 313-323, (2009) https://doi.org/10.1007/s11814-009-0054-5
  5. Moen, I.O., Donato, M., Knystautas, R. and Lee, J.H.S., "Flame acceleration due to turbulence produced by obstacles", Combustion and Flame, 39, 21-32 (1980) https://doi.org/10.1016/0010-2180(80)90003-6
  6. Hjertager, B.H., Fuhre, K., and Bjorkhaug, M., "Concentration effects on flame acceleration by obstacles in large-scale methane-air and propane- air vented explosions", Combustion Science and Technology, 62, 239-256 (1988) https://doi.org/10.1080/00102208808924011
  7. Fairweather, M., Hargrave, G.K, Ibrahim, S.S and Walker, D.G., "Studies of premixed flame propagation in explosion tubes", Combustion and Flame, 116, 504-518 (1999) https://doi.org/10.1016/S0010-2180(98)00055-8
  8. Ibrahim, S.S. and Masri, A.R., "The effects of obstructions on overpressure resulting from premixed flame deflagration", Journal of Loss Prevention in the Process Industries, 14, 213-221 (2001) https://doi.org/10.1016/S0950-4230(00)00024-3
  9. Park, D.J., Green, A.R., Lee, Y.S. and Chen, Y.C., "Experimental studies on interactions between a freely propagating flame and single obstacles in a rectangular confinement", Combustion and Flame, 150, 27-39 (2007) https://doi.org/10.1016/j.combustflame.2007.04.005
  10. Green, A.R., Piper, I.C. and Upfold, R.W., "Gas explosion modelling using massively parallel processing", 25th International Conference Safety in Mines Research Institutes, September, South Africa, (1993)

Cited by

  1. Block Access Token Renewal Scheme Based on Secret Sharing in Apache Hadoop vol.16, pp.8, 2014, https://doi.org/10.3390/e16084185
  2. Mitigation of Blast Pressure according to the Variation of Density and Thickness of the Water Gel vol.13, pp.3, 2013, https://doi.org/10.9798/KOSHAM.2013.13.3.123