Protective Effect of Palmul-tang on Glutamate Induced Cytotoxicity in C6 Glial cells

Glutamate로 유도된 C6 glial 세포의 독성에 대한 팔물탕(八物湯)의 보호 효과

  • Shin, Yong-Jeen (Department of Internal Medicine, College of Oriental Medicine, Wonkwang University) ;
  • Shin, Sun-Ho (Department of Internal Medicine, College of Oriental Medicine, Wonkwang University)
  • 신용진 (원광대학교 한의과대학 심계내과학교실) ;
  • 신선호 (원광대학교 한의과대학 심계내과학교실)
  • Received : 2012.03.23
  • Accepted : 2012.08.06
  • Published : 2012.08.25

Abstract

This study was designed to elucidate the mechanism of the cytoprotective effect of the Palmul-tang (PMT) on glutamate induced cytotoxicity in rat C6 glial cells. We determined the increase of cell viability by PMT on glutamate-induced death of C6 glial cell. On some experiments, glutamate induced cell death to be an apoptotic phenomena characterized by G1 arrest in cell cycle, chromatin condensation, DNA fragmentation in C6 glial cells. However, pre-treatment of PMT inhibited characteristic apoptotic phenomena. One of the main mediator of glutamate-induced cytotoxicity was known to generation of reactive oxigen species. In this study, PMT attenuated generation of reactive oxigen species by glutamate through down-regulation of NOX1 expression in C6 glial cells. Furthermore, PMT regulated Bcl2 families and caspase proteins, which contribute the cell survival or death. This study suggests that PMT may be candidate for both of therapeutic and protective prescription.

Keywords

References

  1. Jae-Chul Lee and Won-Ki Kim. Aging and Stroke. Kor J Gerontol. 16(1):11-16, 2006.
  2. Straus, S.E., Majumdar, S.R., McAlister, F.A. New evidence for stroke prevention. JAMA. 288(11):1388-1395, 2002. https://doi.org/10.1001/jama.288.11.1388
  3. Garcia, J.H., Lassen, N.A., Weiller, C., Sperling, B., Nakagawara, J. Ischemic stroke and incomplete infarction. Stroke. 27(4):761-765, 1996. https://doi.org/10.1161/01.STR.27.4.761
  4. 강성돈, 정진원, 문병순, 김종문. 뇌졸중의 역학적 동향에 대한 연구. 대한신경외과학회지 28: 509-513, 1999.
  5. Javitt, D.C., Zukin, S.R. The role of excitatory amino acids in neuropsychiatric illness. J Neuropsychiatry Clin Neurosci. 2(1):44-52, 1990.
  6. Hrabarova, E., Juranek, I., Soltes, L. Pro-oxidative effect of peroxynitrite regarding biological systems: a special focus on high-molar-mass hyaluronan degradation. Gen Physiol Biophys. 30(3):223-238, 2011. https://doi.org/10.4149/gpb_2011_03_223
  7. Berliocchi, L., Bano, D., Nicotera, P. $Ca^{2+}$ signals and death programmes in neurons. Philos Trans R Soc Lond B Biol Sci. 360(1464):2255-2258, 2005. https://doi.org/10.1098/rstb.2005.1765
  8. Xiao-xia, DONG., Yan, WANG., Zheng-hong, QIN. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin. 30(4):379-387, 2009. https://doi.org/10.1038/aps.2009.24
  9. 마충제, 이남헌, 마진열, 하혜경, 유영법, 신현규. EBM 기반 구축을 위한 팔물탕 문헌 연구 분석. 대한한의학방제학회지 15(2):35-45, 2007.
  10. 虞摶. 醫學正傳. 北京, 人民衛生出版社, p 156, 1981.
  11. 汪昻. 醫方集解. 서울, 大星文化社, p 262, 1984.
  12. 康舜洙, 盧昇鉉, 李尙仁. 方劑學. 서울, 癸丑文化社, p 37, 1985.
  13. 許浚. 東醫寶鑑. 서울, 南山堂, p 447, 1983.
  14. 李載熙. 圖說韓方診療要方. 서울, 醫學硏究社, p 711, 1993.
  15. 송윤희, 김태희. 八物湯복용이 산후 유즙분비 관련인자에 미치는 영향. 대한한방부인과학회지 23(1):12-29, 2010.
  16. 허만규, 홍현우, 감철우, 박동일. 八物湯이 알레르기반응에 미치는 효과. 동의병리생리학회지 17(4):1075-1081, 2003.
  17. 박철훈, 배인태, 정현우. 八物湯이 腦血流力學변화에 미치는 효과. 동의생리병리학회지 18(4):1014-1020, 2004.
  18. 박철훈, 김계엽, 정현우. 八物湯이 腦血流力學변화에 미치는 작용기전. 동의생리병리학회지 18(6):1714-1722, 2004.
  19. 권오봉, 임형호. 八物湯및 加味八物湯이 白鼠의 항피로에 미치는 영향. 한방재활의학과학회지 12(1):89-100, 2002.
  20. 하지용, 남우열. 八物湯이 항암 및 면역조절작용에 미치는 영향. 동의생리병리학회지 10: 295-315, 1995.
  21. 은재순, 전훈, 김대근. 八物湯이 복강 마크로파지의 탐식능에 미치는 영향. 생약학회지 30(4):363-367, 1999.
  22. 박혜준, 고우신. 八物湯이 抗癌및 免疫機能에 미치는 實驗的效果. 대한한의학회지 19(1):327-338, 1998.
  23. 임은경, 신선호. 八物湯이 저산소증에 의한 배양심근세포고사에 미치는 영향. 대한한의학회지 25(2):67-76, 2004.
  24. 辛民敎, 永林社編輯部. 新增方藥合編. 서울, 永林社, p 139, 2003.
  25. Severino, P.C., Muller Gdo A., Vandresen-Filho, S., Tasca, C.I. Cell signaling in NMDA preconditioning and neuroprotection in convulsions induced by quinolinic acid. Life Sci. 289(15-16):570-576, 2011.
  26. Wilson, J.X., Gelb, A.W. Free radicals, antioxidants, and neurologic injury: possible relationship to cerebral protection by anesthetics. J Neurosurg. Anesthesiol. 14(1):66-79, 2002. https://doi.org/10.1097/00008506-200201000-00014
  27. Kim, H.J., Lee, J.H., Kim, S.J., Oh, G.S., Moon, H.D., Kwon, K.B., Park, C., Park, B.H., Lee, H.K., Chung, S.Y., Park, R., So, H.S. Roles of NADPH oxidases in cisplatin-induced reactive oxygen species generation and ototoxicity. J Neurosci. 30(11):3933-3946, 2010. https://doi.org/10.1523/JNEUROSCI.6054-09.2010
  28. Hengartner, M.O. The biochemistry of apoptosis. Nature. 407: 770-776, 2000. https://doi.org/10.1038/35037710
  29. Gross, A., McDonnell, J.M., Korsmeyer, S.J. BCL-2 family members and the mitochondria in apoptosis. Genes & Dev. 13: 1899-1911, 1999. https://doi.org/10.1101/gad.13.15.1899
  30. Deveraux, Q.L., Schendel, S.L., Reed, J.C. Antiapoptotic proteins: The Bcl-2 and Inhibitor of apoptosis protein families. Cardiol Clin. 19(1):57-74, 2001. https://doi.org/10.1016/S0733-8651(05)70195-8
  31. Vucic, D., Dixit, V.M., Wertz, I.E. Ubiquitylation in apoptosis: a post-translation modification at the edge of life and death. Nat Rev Mol Cell Biol. 12(7):439-452, 2011. https://doi.org/10.1038/nrm3143
  32. Kim, K., Lee, S.G., Kegelman, T.P., Su, Z.Z., Das, S.K., Dash, R., Dasgupta, S., Barral, P.M., Hedvat, M., Diaz, P., Reed, J.C., Stebbins, J.L., Pellecchia, M., Sarkar, D., Fisher, P.B. Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol. 226(10):2484-2493, 2011. https://doi.org/10.1002/jcp.22609
  33. Frohlich, N., Nagy, B., Hovhannisyan, A., Kukley, M. Fate of neuron-glia synapses during proliferation and differentiation of NG2 cells. J Anat. 219(1):18-32, 2011. https://doi.org/10.1111/j.1469-7580.2011.01392.x
  34. Buttke, T.M., Sandstrom, P.A. Oxidative stress as a mediator of apoptosis Immunol. Today. 15(1):7-10, 1994.
  35. Coyle, J.T., Puttfarecken, P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 262(5134):689-695, 1993. https://doi.org/10.1126/science.7901908
  36. Dugan, L.L., Sensi, S.L., Canzoniero, L.M., Handran, S.D., Rothman, S.M., Lin, T.S., Goldberg, M.P., Choi, D.W. Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J. Neurosci. 15(10):6377-6388, 1995.
  37. Ndountse, L.T., Chan, H.M. Role of N-methyl-D-aspartate receptors in polychlorinated biphenyl mediated neurotoxicity. Toxicol Lett. 184(1):50-55, 2009. https://doi.org/10.1016/j.toxlet.2008.10.013
  38. Farooqui, T., Farooqui, A.A. Aging: An important factor for the pathogenesis of neurodegenerative diseases. Mech Ageing Dev. 130(4):203-215, 2009. https://doi.org/10.1016/j.mad.2008.11.006
  39. 沙圖穆蘇. 瑞竹堂經驗方. 서울, 大星文化社, p 30, 1995.
  40. 동의학사전 편찬위원회. 新東醫學辭典. 서울, 여강출판사, p 460, 463, 1198, 2005.
  41. Nigg, E.A., Stearns, T. The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol. 13(10)1154-1160, 2011. https://doi.org/10.1038/ncb2345
  42. Prasad, R., Beard, W.A., Batra, V.K., Liu, Y., Shock, D.D., Wilson, S.H. A review of recent experiments on step-to-step "hand-off" of the DNA intermediates in mammalian base excision repair pathways. Mol Biol (Mosk). 45(4):586-600, 2011.