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Implications and numerical application of the asymptotical shock wave model
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Abstract

According to the Lighthill and Whitham’s shock wave model, a shock wave exists even in a homogeneous speed condition. They
referred this wave as unobservable—- analogous to a radio wave that cannot be seen. Recent research has attempted to identify how
such a counterintuitive conclusion results from the Lighthill and Whitham’s shock wave model, and derive a new asymptotical shock
wave model. The asymptotical model showed that the shock wave in a homogenous speed traffic stream is identical to the ambient
vehicle speed. Thus, no radio wave-like shock wave exists. However, performance tests of the asymptotical model using numerical
values have not yet been performed. We investigated the new asymptotical model by examining the implications of the new model,
and tested it using numerical values based on a test scenario. Our investigation showed that the only difference between both models
is in the third term of the equations, and that this difference has a crucial role in the model output. Incorporation of model parametera
is another distinctive feature of the asymptotical model. This parameter makes the asymptotical model more flexible. In addition, due
to various choices of a values, model calibration to accommodate various traffic flow situations is achievable. In Lighthill and
Whitham’s model, this is not possible. Our numerical test results showed that the new model yields significantly different outputs: the
predicted shock wave speeds of the asymptotical model tend to lean toward the downstream direction in most cases compared to the
shock wave speeds of Lighthill and Whitham’s model for the same test environment. Statistical tests of significance also indicate that
the outputs of the new model are significantly different than the corresponding outputs of Lighthill and Whitham’s model.
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[ . Introduction

1. Background Information

Shock waves are defined as boundary conditions in
the time-space domain that denote a discontinuity in
flow-density conditions[1]. Many traffic problems have
been analyzed by deploying this model, and it is
useful to analyze such traffic phenomena as backups
and queuing on a highway, or at an urban signalized
intersection[1, 2, and 3]. Many researchers have suggested
more complex transformed models including Daganzo[3,
4], Newell[5, 6], Zhang[7], and Michalopoulos et al. [8].
However, the basic form of the shock wave model
(SWM) has remained unchanged for more than five
decades.

Lighthill and Whitham first pointed out that there
are some traffic situations in which shock waves are
not observable in the field, whereas the model predicts
the existence of waves [2]. An example is the shock
wave in a homogeneous speed condition. Lighthill and
Whitham referred to this wave as unobservable; that
is, analogous to a radio wave that cannot be seen.
Gerlough and Huber[9] also described this wave as
imaginary, but useful as an analytical tool. This
contradictory example demonstrates the paradox of
Lighthill and Whitham’s model. Cho[10] suggested
that there is no logical reason why this particular
wave is unobservable or imaginary while all other
waves are observable in the field. He denoted this
specific case as the SWM paradox, and attempted to
resolve the paradox by deriving a new asymptotical
shock wave model. By evaluating the development of
Lighthill and Whitham’s model, Cho shows that
oversimplified assumptions regarding the relationships
between speed, density, and flow are the direct causes
of the model distortion. Although the simplified
assumptions in Lighthill and Whitham’s model allow a

very simple derivation procedure, its outputs for

certain conditions are severely distorted. The asymptotical
model requires a more complex derivation, but it resolves

the contradictory output of the existing model.

2. Study purpose and approach

The asymptotical model is more flexible than
Lighthill and Whitham’s model since it incorporates
the speed-space relationship during the speed or
spacing transition procedure. However, Cho’s previous
work[10]
asymptotical model and on the resolution of the SWM

concentrated on the derivation of the
paradox. The asymptotical model is not self-explanatory,
and implications of the new model have not been
the the

implications of the new model, especially in association

explored. Investigation of features and
with numerical speed values, were all passed over to
the further study. Further, the asymptotical model
incorporated a new parameter @, but no numerical
values were used to reveal the relation of the parameter
to the model outputs.

We explored the implications and applicability issues
of the asymptotical SWM, and performed rigorous
numerical tests to demonstrate the performance of the
new model. We reviewed Cho’s model, including the
comparison between the new and the classical models
in terms of derivation procedure, assumptions, and
features. To assess the applicability of the new
asymptotical model, a set of traffic data is cited from a
textbook, and the data are applied to the new model

based on several scenarios.

II. Review of Shock Wave Models

We reviewed the derivation procedures of the shock
wave models of Lighthill-Whitham, and Cho, both of
which are shown in Cho’s article[10]. We assumed
that the highway has a one-directional lane. The lane

maintains a geometric condition in the time and space
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domains. Vehicle conservation induces a relationship
between the traffic flow rate change with respect to
the space between two consecutive vehicles, and the

associated density.

1. Lighthill and Whitham's shock wave model

Cho[10] cited the geographic derivation procedure
of Lighthill and Whitham’s SWM. It was assumed
that a driver is traveling along a homogeneous
highway at a constant speed v, and then suddenly
changes the speed to v’ and maintains this speed for
an arbitrary length of time. A following driver may
accelerate or decelerate in some manner. If unable to
pass, the following driver will also adjust to the new
speed v’. Regardless of the details of the trajectory,
we extrapolated the trajectory at speeds v and v’ until
the two asymptotes intersected, and we imagined that
the following car had such a piecewise linear
trajectory. By drawing the trajectories on a sufficiently
coarse scale of distance, the details of the transition

would not be seen, as shown in Fig. 1.

x (distance)

slope v’

s’ ~"slope v*

t (time)

slope v

(Fig. 1> Trajectories of Lighthill and Whitham’s
model.

If a sequence of cars is traveling at speed v have
spacing s, flow q, etc., and when traveling at speed

v’ have spacing s’, flow q’, etc., (both determined

from the same curves of v vs. s, and q vs. k, etc.),
then the trajectory corners will all lie on a straight line.
The path upon which the speed change propagates is
called a shock wave. From the geographic conditions
and associated mathematical computation, Lighthill-
Whitham’s SWM was formulated as follows:

s d*_ (7)) (g-¢)k'k

\% =

S

_49-4q
qq'(k - k') k'-k

M

where v* is the speed of the shock wave, d* is the
distance the wave travels from one car to the next,
and 7* is the time for the wave to propagate from one
car to the next.

According to Eq. (1), the shock wave speed is the
ratio of the flow difference (q” - q) and the density
difference (k- k). The shock wave speed is shown
graphically as the slope of the line passing the points
(k, q)and(k’, q”) on a flow-density diagram (Fig. 2).

ow
Slope v
\\\\\ Slope V'
q 7 \\\
q >
™ Slope v*
0
k k' ki Density

(Fig. 2) Lighthill and Whitham's shock wave speed
on a flow-density diagram.

2. The shock wave model paradox

Cho argued that since the derivation of Eq. (1)
relies on assumptions of relationships among ¢, v, and
k, the shock wave equation is valid for v < v/, v >

v’ and v = v, That is, the equation should accommodate
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any situation, as follows:

A >0,

A <0, or

A=0

where A= v - v,
For the case in which A = 0 or v = v/ (homogeneous
speed traffic), all drivers maintain an identical speed v.
Therefore, no waves propagate down ward or upward.
The meaning of “no wave existence” is not that v*=0,
but that the wave speed is “identical” to v(the speed
of the vehicles). If v* is a value other than v, then a
shock wave should be the
solution wave speed for this case in the Lighthill-
Whitham’s model is v*(i.e., not v), as shown in Fig.

observable. However,

3. This means that in a traffic stream where all the
vehicles are cruising at the same speed, the model
predicts a wave that propagates forward or backward.
This is a clear contradiction, since we cannot detect a

shock wave in traffic traveling at a homogeneous speed.

\ Slopes v, V'

a.a’

N\
N
\
\

\
\\S\ope v*

\
N

0

kK ki

(Fig. 3> Lighthill and Whitham's shock wave
speed in a homogeneous speed flow.

Density

Cho showed that the contradictory outcome of
Lighthill and Whitham’s
ignorance of the speed-space relationship between
Cho that the
speed-density trajectory of the second vehicle against

model stemmed from

demonstrated

consecutive  vehicles.

the first follows ab’ rather than ab, as shown in Fig.

4. Similar violations of initial assumptions are

illustrated in both the flow-density and flow-speed
diagrams. Trajectories follow ab” rather than ab. In
both cases, the speed did not change, whereas the
flow and density changed from q to q” and k to k,

respectively.
w
.”b/
b
a
Kk 3 density
sed speed
b b’
v
b v’ o
, F 0 -
K K density q q flow

(Fig. 4) Distorted diagrams of the Lighthill and
Whitham’s model.

3. Cho’s asymptotical shock wave model

Cho’s new approach attempted to eliminate the
distortion in the relationships among flow, density, and
speed from the derivation of the Lighthill-Whitham’s
model by modifying the vehicle trajectories in a
time-space diagram to accommodate the changed speed
at every instant as the spacing changes from s to s”
(Fig. 5). That is, when a preceding vehicle changes
speed from vto v, the following vehicle continuously
changes speed in a way such that the relationship
between the spacing of the preceding vehicle and the
speed of the following vehicle strictly follows the
Greenshield’s
Figure 5 shows the trajectories of the two different

presumed relationships; i.e., model.
models.
In Fig. 5, the trajectory of the preceding vehicle is

the same in both models. The trajectories of the
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following vehicle in the existing and the revised
models differ; one exhibits piecewise linear lines
whereas the other is a monotonic curve. The dashed
line in Fig. 5 represents the trajectory of the following
vehicle in the existing model, and the solid curve
below it represents the trajectory in the revised model.
Thus, the time required for the following vehicle to
change its spacing from s to s’ is different in each
model: one is 7* and the other is 7**. Cho noted that
in the case of the revised approach, the speed changes
continuously as the spacing changes from s to s’.
Therefore, the relationships among flow, density, and
speed satisfy the presumed relationships to eliminate

the modeling distortion of the existing approach.

slope v’ s g

Lighthill and t (time)
Whitham ' s mode

(slopes v, v')

Cho ' s asymptotical model
(slope changes continuously)

AT

N

(Fig. 5) Comparison of time-space trajectories.

From this revised trajectory, Cho’s asymptotical

shock wave model is written as follows:

kl

Kok | kok
i PR

Vs
vir =Ll -

@

Equation (2) represents the shock wave speed

expressed by k and k” in the new asymptotical model.

vy

In the equation, X, and %, are constant under given

highway conditions, and « is a model parameter.

In a homogeneous traffic stream, v and v’, and s
and s are identical and constant, respectively. In this
case, the wave velocity v**can be represented by

letting k" approach k in Eq.(2):

lim(v"™") = lim| M P K
o kY kfik“n(ﬁf&
14
—f{kj—k—k}
kj —o0
k
=v,ql=-—
kj
=v 3)

Thus, in the asymptotical model, the shock wave
speed in a homogeneous traffic stream is always
identical to the ambient vehicle speed. Graphically, the
slopes of v, v/, and v** of the revised model shown
in Fig. 6 are all the same, whereas the shock wave
speed v* of Light hill and Whitham’s model differs
from the traffic speed(v or v’ ).

W

AN Slope v**
N _» (asymptotical
X model)
\\
Slopes v, V'

a,9’

\\
Slope v*

N
\(Lighth\'\l—WhItham ''s model)
\
\

\
N

0

kK ki Density

(Fig. 6) Comparison of wave speeds in homogeneous
traffic stream.
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. Implications and Test of the
Asymptotical Shock Wave Model

We investigated the features of the asymptotical
model in comparison with the Lighthill-Whitham’s
model. Due to the different approaches of the models,
the final mathematical equations and their numerical
for traffic ~ situation

outputs are

distinguishable. The only known functional difference

any  given
is that the asymptotical model yields a shock wave
speed identical to the ambient traffic speed in a
homogeneous flow condition, whereas the Lighthill-
Whitham’s model produces a shock wave speed that is
quite different from the traffic speed.

1. Comparison of the models

(1) Trajectory of the following vehicle in the model

A distinctive aspect of the asymptotical shock wave
model in comparison with the classic model is that it
deploys a stringent speed-space relationship between
two consecutive vehicles in traffic while the model
was derived. We note that in the classic shock wave
model, the following vehicle maintains speed v until
the space reach to s’, which satisfies the given
speed-space relationship. Then, the speed is reduced to
v’ abruptly. Thus, the trajectory of the following
vehicle in the Lighthill-Whitham’s model is represented
by the two linear lines shown in Fig. 5. Cho argued
that  this
flow-density-speed relationships. He suggested that as

assumption  significantly ~ distorts  the
the following vehicle approaches the front vehicle, the
assumed speed-density-flow relationships follow the a
b’ lines instead of the ab curves(the lines in Fig. 4).

On the other hand, Cho’s asymptotical model
adjusts the spacing continuously to incorporate the
This

necessarily mean that one model is better than the

speed-density-flow  relationships. does  not

other. Any field observations will show that the

the

behavior of the following vehicle in a more realistic

asymptotical model mimics space adjusting

manner. Several researchers have demonstrated the
shortcomings of hydrodynamic or fluid models to
represent traffic flow[9].  Applying to traffic those

models implies greater concern in the over-all
statistical behavior of the traffic stream than in the
interaction between vehicles[11]. Cho showed that the
prediction of radio wave-like imaginary propagation in
the Lighthill-Whitham’s model is an example of the
shortcomings of a fluid model. The numerical
comparisons of the performance of both models are

discussed in the following section.

(2) Comparison of model equations

The the
asymptotical model is given by Eq. (2), which

governing mathematical equation of
includes the free flow speed v, jam density kj, and
the density before and after the speed change(k and
q’, respectively). For a side-by-side comparison,
Lighthill-Whitham’s model (Eq. (1)) can be rewritten
with the same variables in Eq. (2) by substituting the
flows (q and q” ) with free the flow speed (vy), jam
density(k;), and the density before and after the speed
change(k and k’). Thus, the variable-substituted
Lighthill-Whitham’s model governing equation is given by

ve =Yk — KK
K(/ )

A comparison of Egs. (2) and (4) shows that the

third term in the parentheses of both equations is the

Q)

only difference between the two models. However, a
comparison of the third term of each equation cannot
be made directly. The third term of the asymptotical
model includes k, k” , anda, and the third term of the
Lighthill-Whitham’s model has only one variable, k.
Although the complete implications of the combined

effect of k, k', and a in the asymptotical model is
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not clear, it is certain that the third term in the
parenthesis of Eq. (2) plays the crucial role in the
asymptotical model by establishing that the shock wave
speed of the homogeneous flow condition is identical to
the ambient speed. The use of actual numerical values
in the equations enables a quantitative comparison of
both models, as described in Section 2.

Incorporation of model parameter a is another
feature of the asymptotical model. Equation (2) clearly
indicates that the value of a affects the results for any
flow condition. However, since Cho focused on a
verification that are no radio wave-like imaginary
shock waves at a homogeneous speed condition, a
specific numerical value of a was omitted in his
article except that it is slightly greater than 1.0.
Deployment of a into the model requires a more
complex computational procedure. However, when the
appropriate value is available, the model would be
more flexible; thus, it can be applied to various traffic

situations by accommodating specific driving behavior.

2. Test of the asymptotical model with
numerical values

To demonstrate the performance of the asymptotical
shock wave model, a set of numerical values is
deployed in the model. For convenient comparison and
data accessibility, numerical values are cited from a
contemporary traffic engineering textbook written by
Garber and Hoel[11].

distance scale uses miles (mi) instead of kilometers

For the same reason, the

(km). The numerical traffic values are as follows:

Saturation flow rate max=2000 veh/hr/In
Jam density k;=150 veh/In/mi

From Greenshild’s speed-density relationship and
the

determined as follows:

equation q=kev, free flow speed v¢ was

Free flow speed v¢ = 53.3 miles per hour(mph)

The Greenshild speed-density relationship was used
in Cho’s paper; thus, no other advanced density-speed
relationships were considered for this numerical test.
Since the asymptotical model was applicable only to
deceleration flow conditions (i.e., v>v’ ), the numerical
tests of the model were restricted accordingly. In
addition to the traffic data, the value of a should be
decided for the numerical test of the asymptotical
model. When the model was derived, Cho mentioned
that a is a number slightly greater than 1.0 but there
was no further description on it. Since there has been
no empirical study on the appropriate value of a, we
assumed that it lies somewhere in between 1.05 and
1.0005 which means that the following driver stops
hisfher vehicle spacing adjustment with 0.05 to 5

percent margin.

(1) Test 1: The existence of a radio wave-like
imaginary shock wave

Our initial concern with the asymptotical model was
the existence of a radio wave-like imaginary shock
wave in the homogeneous traffic flow condition.
Shock wave speeds v* and v** were computed using
Egs. (1) and (2), respectively. The input densities k
and k” (k = k) ranged from O to 150 veh/l/mi with
an increment of 5. The computation results are plotted
in Figs. 8 and 9.

Figure. 8 is an integrated plot of the numerical test
results for density for the homogeneous traffic flow
condition. Throughout the entire data range, the shock
wave speeds of the asymptotical model are identical to
the ambient traffic speed. This result indicates that the
asymptotical shock wave model is wvalid for
homogeneous traffic conditions with numerical data. In
addition, the shock wave speeds of the asymptotical

model are not affected by a change in the value of a,
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as shown by Eq. (3) when k approaches k’ .

SW speed (mph)
60 -y (=)
SN~ mm—y v*

v¥¥ (2=1.05)

40

20 . <
~
~
~
N
0 . \

-20

-£0 ~.

~

<
SN 53.3mph

-60

(Fig. 7) Comparison of wave speeds in homogeneous
traffic stream along density.

On the contrary, the of
Lighthill and Whitham’s model linearly decrease
according to the increase in ambient density. In Figs.
7 and 8, all the shock wave speeds from Lighthill and

Whitham’s model are not identical to the ambient

shock wave speeds

speed, except when the ambient speed is a free flow
condition. These speeds are the radio wave-like
imaginary shock wave speeds referred to by several
researchers. When the density reached the jam density,
-53.3 mph. When

compared to the ambient traffic speeds v and v’ (v=

the shock wave speed was

v’), except the point at which k=0, the shock wave
speeds of Lighthill and Whitham’s model are always
smaller than corresponding ambient speeds, and the
difference in the two speeds increase in proportion to

the density.

SW speed (mph)
60

" ———t

v** (a=1.05)

40

20

-
0 -

- — - — — v, v (mph)
0 4 7 11 14 18 ZL’fS 28 32 36 39 43 46 50 53
>
-

-20

40 -

-60

(Fig. 8) Comparison of wave speeds in homogeneous
traffic stream along speed.

(2) Test 2: Shock waves with flow-conserved traffic
conditions

We considered a particular case in which the front
vehicle changes its speed from k to k” but the flows
before and after the speed change remained unchanged
such that q=q” . According to Lighthill and Whitham’s
model, the shock wave speed v* is stationary; thus, it is
depicted as a horizontal line as shown in Fig. 9. The
theoretically possible numbers of such a stationary shock
wave are as large as the maximum flow. Figure 10
shows the all the numerical test results in a crude scale.
The shock wave speeds of Lighthill and Whitham’s
model with the test data under such conditions are
plotted on the horizontal axis in the figure.

In Figure 10, we plotted the shock wave speed of
the asymptotical model for three different a values.
The three shock waves, regardless of a value,
increased gradually. When the flow was 2000
veh/In/hr, all three speeds reached 26.7 mph, which is
identical to the ambient speed. We note that the
smaller a value resulted in the larger shock wave
speed at a given flow. Overall, the shock wave speed
of the asymptotical model is larger than that of
Lighthill and Whitham’s model, which is stationary
regardless of the prevailing flow density. In other
words, the shock waves of the asymptotical model

propagate in the downstream direction, and those from

Slope v

Slope v

——————— > Slope v*

0

k K ki Density
(Fig. 9) A shock wave in which the flows are

unchanged.
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A

SW speed (mph)

—_—

----- V** (a=1.05)

- = = Vv** (a=1.005)

V** (@=1.0005)

Flow (a,=q,)
(veh/In/hr)

(Fig. 10) Comparison of shock waves in which
the flows are unchanged.

Lighthill and Whitham’s model are stationary. Since
an empirical test of both models is beyond the scope
of this study, it is not yet clear which model
replicates the real-world traffic phenomenon more
correctly. Further research should include such a
comparison, based on field observation.

The three curves of the asymptotical model show
that there is an articulated point at which each line
changes sharply between flows of 1900 and 2000
veh/In/hr. At the data region around the crown point
of the parabolic curve shown in Fig. 9, the difference
between k and k is relatively small, which means that
the spacing difference between the two flow regions is

very small. This is described further in Section (3).

(3) Test 3: Stopping at an urban signalized intersection

One of the most frequent observations of shock
waves occurs at a congested urban intersection when
the signal changes to a red light. Regardless of the
prevailing approaching speed v, the final speed v’ of
the flow is zero. Figure 11 describes such an event
wherein the shock wave propagates backward at a
relatively high speed.

For a detailed illustration of the shock wave
comparison graph, two identical numerical tests were
conducted with different density ranges. Figure 12

compares the shock waves formed when the flow

condition changed from stable to no flow; thus, the
initial density k ranged from O(free flow condition) to
75 veh/In/mi. Figurel3 is plotted for the initial density
k from75 to 150 veh/In/mi.

Slope v

N .
N\ Slopev

k Kok
~ Slope v*
N

(Fig. 11) Backward shock wave at signalized
intersection.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
k (veh/In/mi)

----- v** (0=1.05)

- = =v** (a=1.005)

v** (2=1.0005)

-26.7mph

-30

speed (mph)

(Fig. 12) Comparison of shock waves at signalized
intersection: stable flow to no flow.

In Figure 12, the shock waves of the Lighthill and
Whitham’s model change linearly toward the upstream
direction as the initial density k increases. The line is
steeper than the other three curves of the asymptotical
model. Thus, for the given flow condition, the shock
wave speed of the asymptotical model is smaller than
that given by the Lighthill and Whitham’s model. Or,
equivalently, the shock wave speed of the asymptotical
model tends to lean toward the downstream direction
without exception, including all situations described in

Section(2). The effect of a is similar to that in the
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aforementioned tests: the smaller the a value, the
larger the shock wave speed at a given flow.

Since the output difference between the two models
is distinct and systematic, we expect that tests of both
models with a set of field observation data will clearly
reveal which model is more applicable to the given
empirical site. We note that Lighthill and Whitham’s
model is much stiffer since it yields only one output
for a given situation in which a shock wave occurs. In
contrast, in the case of the asymptotical model, the
output may vary depending on the a value deployed.
Thus, the flexibility of the model is apparent.

Figure 13 shows the remaining half of the initial
density k spectrum: 75 to 150 veh/ln/mi. The shock
wave speeds of the asymptotical model with an a
value of 1.05 near the jam density are noticeable
larger than the neighboring speed. Figure 13 also
shows two outlying data points around the jam density
where the initial density k approaches the final density
k’. This is similar to the case described in Section (2)
in which the shock wave plots were bent sharply.
Thus, the asymptotical model should be used with
caution when the difference between k and k’ is not
significant. Both shock waves with a values of 1.005
and 1.0005 were much smaller than those given by
Lighthill and Whitham’s model.

v

=====v** (a=1.05)

= = = v** (=1.005)

v** (@=1.0005)

SW speed

(mph)

°

'

|

|

|

1

i

[

)

|

i

L

i

1
L‘

H
-100 v
N

75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150  k (veh/In/mi)

(Fig. 13) Comparison of shock waves at signalized
intersection: forced flow to stop.

Consider the shock waves of both models excluding
the outlying data region. Figure 14 combines Figs. 12
and 13, excluding the near-jam density region. The
figure demonstrates the wide range of possible
outcomes of the asymptotical model with respect to
the choice of a values. The model appears to be more
flexible and, due to the choice of various a values,
model calibration to accommodate various traffic flow
situations is achievable. This is not the case with

Lighthill and Whitham’s model.

0 10 20 30 40 50 60 70 80 90 100 110 120 k (veh/In/mi)

-10

20 v*

\
\ -
N mm=—- Vv¥* (0=1.05)

N - = = v** (0=1.005)
30 \

v¥* (0=1.0005)

-40

-50
SW speed (mph)

(Fig. 14) Comparison of shock waves at signalized
intersection: all flow to stop.

3. Test of significance

The performance tests of the asymptotical shock wave
model described in Section 2 showed that its outputs are
different than the corresponding outputs of Lighthill and
Whitham’s model. We assessed whether the outputs of
both models are different significantly in a statistical
sense. Since the same numerical input data were deployed
to each model, a matched difference t-test was repeatedly
applied for each numerical test(Test 1, Test 2, and Test 3
as described in Section 2). The formulated null hypothesis
for the significance test was defined as follows:

Hy: The observed average of the differences of both
models is not significantly greater than the expected

average of the difference (0).
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(Table 1) Tests of significance of model performance

Sample Output difference Standard . Degree of
. .. t-statistic Reference  p-value
size average Deviation freedom
Test 1 31 243 193 7.006 30 p < 0.0005
Test 2 21 4.6 59 3.587 20 0.0005 < p < 0.005
Test 3 27 9.3 62 7.659 26 p < 0.0005
The model output differences of each numerical scenarios.

deployment, the standard deviations, the t-statistics,
and the p-values were computed, and these results are
summarized in Table 1.

In Tests 1 and 3, both p-values are smaller than
0.0005; thus, the null hypothesis can be rejected at the
0.05% level of significance. In Test 2, the p-value is
smaller than 0.005 and greater than 0.0005. The null
hypothesis is also rejected at the 0.5% level of
significance. The three tests of significance indicate
that the asymptotical model yielded significantly
different outputs compared to Lighthill and Whitham’s

model.

IV. Concluding Remarks

One distinctive aspect of the asymptotical shock

wave model in comparison with Lighthill and
Whitham’s classic model is that it uses a stringent
speed-space relationship between two consecutive
vehicles in traffic while the model was derived. Due
to the different methods used in the models, the final
mathematical equations and their numerical outputs for
any traffic situation are distinguishable. The only
known functional difference was that the asymptotical
shock wave model yields a shock wave speed identical
to the ambient traffic speed in a homogeneous flow
condition, whereas the Lighthill and Whitham’s classic
model produces a shock wave that is quite different
the traffic the

implications of the new model, and tested it by

from speed. We investigated

deploying numerical values based on a set of test

A comparison of the equations of the asymptotical
and the Lighthill and Whitham’s models showed that
the third term (out of three terms) of the equations in
each model represented the only difference between
the the

approaching method difference of the two models, the

two models. Considering significant
similarity between the models was least expected.
However, we are certain that the third term in the
asymptotical model ensures that the shock wave speed
for a homogeneous flow condition is always identical
to the ambient speed. Numerical test results support
this conclusion.

The incorporation of parameter a is another distinct
feature of the asymptotical model. The value of a
significantly affected the results for all flow conditions
considered. The deployment of a required a more
complex computational procedure. However, if the
appropriate value is available, the model can be more
flexible; thus, it can be applied to various traffic
situations by accommodating specific driving behavior.
Thus the incorporation of parameter a made the
asymptotical model more flexible. Due to the various
choices of a, model calibration to accommodate
various traffic flow situations is achievable, which is
not the case with Lighthill and Whitham’s model.

Numerical tests of the asymptotical model showed
that the predicted shock wave speed was smaller than
that predicted by Lighthill and Whitham’s model in
most cases. The shock wave speed of the asymptotical
model tends to lean toward the downstream direction

to a greater degree than the shock wave speed of
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Lighthill and Whitham’s model for the same test
environment. When a larger a value is used, the output
difference between the models tends to be mitigated.
However, three tests of significance show that the
asymptotical model yields significantly different outputs
compared with Lighthill and Whitham’s model. Since
the overall output difference between the two models is
distinctive and systematic, tests and comparisons with
both models using sets of empirical field data should be
performed in future research.

Real world wave speeds of the deceleration and
acceleration of flow speed may not be identical in
general. Newell [5] and Zhang [7] considered such cases.
The asymptotical model addresses only the deceleration
Further study should include the

acceleration case using the asymptotical model.

flow condition.
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