DOI QR코드

DOI QR Code

The Mitogen-Activated Protein Kinase Signal Transduction Pathways in Alternaria Species

  • Xu, Houjuan (College of Plant Protection, Shandong Agricultural University) ;
  • Xu, Xiaoxue (College of Plant Protection, Shandong Agricultural University) ;
  • Wang, Yu-Jun (College of Plant Protection, Shandong Agricultural University) ;
  • Bajpai, Vivek K. (School of Biotechnology, Yeungnam University) ;
  • Huang, Lisha (College of Plant Protection, Shandong Agricultural University) ;
  • Chen, Yongfang (College of Plant Protection, Shandong Agricultural University) ;
  • Baek, Kwang-Hyun (School of Biotechnology, Yeungnam University)
  • Received : 2012.04.03
  • Accepted : 2012.05.15
  • Published : 2012.09.01

Abstract

Mitogen-activated protein kinase (MAPK) cascades are conserved signaling modules in the eukaryotic cells. They are involved in many major cell processes in fungi such as stress responses, vegetative growth, pathogenicity, secondary metabolism and cell wall integrity. In this review, we summarized the advances of research on the MAPK signaling pathways in Alternaria species. As major phytopathogenic fungi, Alternaria species reduce crop production. In contrast to the five MAPK pathways known in yeast, only three MAPK pathways as Fus3/Kss1-type, Hog1-type, and Slt2-type have been characterized in Alternaria. The Fus3/Kss1-type MAPK pathway participates in regulation of vegetative growth, conidiation, production of some cell-wall-degrading enzymes and pathogenicity. The Hog1-type pathway is involved in osmotic and oxidative stress, fungicides susceptibility and pathogenicity. The Slt2-type MAP kinases play an important role on maintaining cell wall integrity, pathogenicity and conidiation. Although recent advances on the MAPK pathways in Alternaria spp. reveal many important features on the pathogenicity, there are many unsolved problems regarding to the unknown MAP kinase cascade components and network among other major signal transduction. Considering the economic loss induced by Alternaria spp., more researches on the MAPK pathways will need to control the Alternaria diseases.

Keywords

References

  1. Adam, A. L., Kohut, G. and Hornok, L. 2008. Fphog1, a hog-type map kinase gene, is involved in multistress response in Fusarium proliferatum. J. Basic Microbiol. 48:151-159. https://doi.org/10.1002/jobm.200700403
  2. Alonso-Monge, R., Carvaihlo, S., Nombela, C., Rial, E. and Pla, J. 2009. The hog1 map kinase controls respiratory metabolism in the fungal pathogen Candida albicans. Microbiology 155:413-423. https://doi.org/10.1099/mic.0.023309-0
  3. Alonso-Monge, R., Navarro-Garcia, F., Molero, G., Diez-Orejas, R., Gustin, M., Pla, J., Sanchez, M. and Nombela, C. 1999. Role of the mitogen-activated protein kinase hog1p in morphogenesis and virulence of Candida albicans. J. Bacteriol. 181:3058-3068.
  4. Alonso-Monge, R., Navarro-Garcia, F., Roman, E., Negredo, A. I., Eisman, B., Nombela, C. and Pla, J. 2003. The hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot. Cell 2:351-361. https://doi.org/10.1128/EC.2.2.351-361.2003
  5. Brachmann, A., Schirawski, J., Muller, P. and Kahmann, R. 2003. An unusual map kinase is required for efficient penetration of the plant surface by Ustilago maydis. EMBO J. 22:2199-2210. https://doi.org/10.1093/emboj/cdg198
  6. Brewster, J. L., De Valoir, T., Dwyer, N. D., Winter, E. and Gustin, M. C. 1993. An osmosensing signal transduction pathway in yeast. Science 259:1760-1763. https://doi.org/10.1126/science.7681220
  7. Butler, M. J., Day, A. W., Henson, J. M. and Money, N. P. 2001. Pathogenic properties of fungal melanins. Mycologia 93:1-8. https://doi.org/10.2307/3761599
  8. Bussink, H. J. and Osmani, S. A. 1999. A mitogen-activated protein kinase (mpka) is involved in polarized growth in the filamentous fungus, Aspergillus nidulans. FEMS Microbiol. Lett. 173:117-125. https://doi.org/10.1111/j.1574-6968.1999.tb13492.x
  9. Chen, C., Harel, A., Gorovoits, R., Yarden, O. and Dickman, M. B. 2004. Mapk regulation of sclerotial development in Sclerotinia sclerotiorum is linked with ph and camp sensing. Mol. Plant-Microbe Interact. 17:404-413. https://doi.org/10.1094/MPMI.2004.17.4.404
  10. Chen, J., Wang, Q. and Chen, J. Y. 2000. Cek2, a novel mapk from Candida albicans complement the mating defect of fus3/kss1 mutant. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 32:299-304.
  11. Chen, R. E. and Thorner, J. 2007. Function and regulation in mapk signaling pathways: Lessons learned from the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1773:1311-1340. https://doi.org/10.1016/j.bbamcr.2007.05.003
  12. Cho, Y., Cramer Jr, R. A., Kim, K.-H., Davis, J., Mitchell, T. K., Figuli, P., Pryor, B. M., Lemasters, E. and Lawrence, C. B. 2007. The fus3/kss1 map kinase homolog amk1 regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola. Fungal Genet. Biol. 44:543-553. https://doi.org/10.1016/j.fgb.2006.11.015
  13. Choi, E. S., Chung, H. J., Kim, M. J., Park, S. M., Cha, B. J., Yang, M. S. and Kim, D. H. 2005. Characterization of the erk homologue cpmk2 from the chestnut blight fungus Cryphonectria parasitica. Microbiology 151:1349-1358. https://doi.org/10.1099/mic.0.27796-0
  14. Cousin, A., Mehrabi, R., Guilleroux, M., Dufresne, M., T, V. D. L., Waalwijk, C., Langin, T. and Kema, G. H. 2006. The map kinase-encoding gene mgfus3 of the non-appressorium phytopathogen Mycosphaerella graminicola is required for penetration and in vitro pycnidia formation. Mol. Plant Pathol. 7:269-278. https://doi.org/10.1111/j.1364-3703.2006.00337.x
  15. Csank, C., Schroppel, K., Leberer, E., Harcus, D., Mohamed, O., Meloche, S., Thomas, D. Y. and Whiteway, M. 1998. Roles of the Candida albicans mitogen-activated protein kinase homolog, cek1p, in hyphal development and systemic candidiasis. Infect Immun. 66:2713-2721.
  16. Davenport, K. R., Sohaskey, M., Kamada, Y., Levin, D. E. and Gustin, M. C. 1995. A second osmosensing signal transduction pathway in yeast. Hypotonic shock activates the pkc1 protein kinase-regulated cell integrity pathway. J. Biol. Chem. 270:30157-30161. https://doi.org/10.1074/jbc.270.50.30157
  17. Delgado-Jarana, J., Sousa, S., Gonzalez, F., Rey, M. and Llobell, A. 2006. Thhog1 controls the hyperosmotic stress response in Trichoderma harzianum. Microbiology 152:1687-1700. https://doi.org/10.1099/mic.0.28729-0
  18. Di Pietro, A., Garcia-Maceira, F. I., Meglecz, E. and Roncero, M. I. 2001. A map kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol. Microbiol. 39:1140-1152. https://doi.org/10.1111/j.1365-2958.2001.02307.x
  19. Diez-Orejas, R., Molero, G., Navarro-Garcia, F., Pla, J., Nombela, C. and Sanchez-Perez, M. 1997. Reduced virulence of Candida albicans mkc1 mutants: A role for mitogen-activated protein kinase in pathogenesis. Infect Immun. 65:833-837.
  20. Dixon, K. P., Xu, J. R., Smirnoff, N. and Talbot, N. J. 1999. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11:2045-2058. https://doi.org/10.1105/tpc.11.10.2045
  21. Dongo, A., Bataille-Simoneau, N., Campion, C., Guillemette, T., Hamon, B., Iacomi-Vasilescu, B., Katz, L. and Simoneau, P. 2009. The group III two-component histidine kinase of filamentous fungi is involved in the fungicidal activity of the bacterial polyketide ambruticin. Appl Environ Microbiol 75:127-134. https://doi.org/10.1128/AEM.00993-08
  22. Dufresne, M. and Osbourn, A. E. 2001. Definition of tissue-specific and general requirements for plant infection in a phytopathogenic fungus. Mol. Plant-Microbe Interact. 14:300-307. https://doi.org/10.1094/MPMI.2001.14.3.300
  23. Eisman, B., Alonso-Monge, R., Roman, E., Arana, D., Nombela, C. and Pla, J. 2006. The cek1 and hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eukaryot. Cell 5:347-358. https://doi.org/10.1128/EC.5.2.347-358.2006
  24. Eliahu, N., Igbaria, A., Rose, M. S., Horwitz, B. A. and Lev, S. 2007. Melanin biosynthesis in the maize pathogen Cochliobolus heterostrophus depends on two mitogen-activated protein kinases, chk1 and mps1, and the transcription factor cmr1. Eukaryot. Cell 6:421-429. https://doi.org/10.1128/EC.00264-06
  25. Guo, J., Dai, X., Xu, J. R., Wang, Y., Bai, P., Liu, F., Duan, Y., Zhang, H., Huang, L. and Kang, Z. 2011. Molecular characterization of a fus3/kss1 type mapk from Puccinia striiformis f. Sp. Tritici, psmapk1. PLoS One 6:e21895. https://doi.org/10.1371/journal.pone.0021895
  26. Gustin, M. C., Albertyn, J., Alexander, M. and Davenport, K. 1998. Map kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62:1264-1300.
  27. Hou, Z., Xue, C., Peng, Y., Katan, T., Kistler, H. C. and Xu, J. R. 2002. A mitogen-activated protein kinase gene (mgv1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol. Plant-Microbe. Interact. 15:1119-1127. https://doi.org/10.1094/MPMI.2002.15.11.1119
  28. Humberto, M., Javier, A., Miguel, S., María, M. and Cesar, N. 1993. Activity of the yeast MAP kinase homologue Sit2 is critically required for cell integrity at 37${^{\circ}C}$. Mol. Gen. Genet. 241:177-184. https://doi.org/10.1007/BF00280215
  29. Igbaria, A., Lev, S., Rose, M. S., Lee, B. N., Hadar, R., Degani, O. and Horwitz, B. A. 2008. Distinct and combined roles of the map kinases of Cochliobolus heterostrophus in virulence and stress responses. Mol. Plant-Microbe. Interact. 21:769-780. https://doi.org/10.1094/MPMI-21-6-0769
  30. Jacobson, E. S. 2000. Pathogenic roles for fungal melanins. Clin. Microbiol. Rev. 13:708-717. https://doi.org/10.1128/CMR.13.4.708-717.2000
  31. Jenczmionka, N. J., Maier, F. J., Losch, A. P. and Schafer, W. 2003. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the map kinase gpmk1. Curr. Genet. 43:87-95.
  32. Joubert, A., Bataille-Simoneau, N., Campion, C., Guillemette, T., Hudhomme, P., Iacomi-Vasilescu, B., Leroy, T., Pochon, S., Poupard, P. and Simoneau, P. 2011a. Cell wall integrity and high osmolarity glycerol pathways are required for adaptation of Alternaria brassicicola to cell wall stress caused by brassicaceous indolic phytoalexins. Cell. Microbiol. 13:62-80. https://doi.org/10.1111/j.1462-5822.2010.01520.x
  33. Jun, S.-C., Lee, S.-J., Park, H.-J., Kang, J.-Y., Leem, Y.-E., Yang, T.-H., Chang, M.-H., Kim, J.-M., Jang, S.-H., Kim, H.-G., Han, D.-M., Chae, K.-S. and Jahng, K.-Y. 2011. The mpkb map kinase plays a role in post-karyogamy processes as well as in hyphal anastomosis during sexual development in Aspergillus nidulans. J. Micro. 49:418-430. https://doi.org/10.1007/s12275-011-0193-3
  34. Kawasaki, L., Sanchez, O., Shiozaki, K. and Aguirre, J. 2002. Saka map kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol. Microbiol. 45:1153-1163. https://doi.org/10.1046/j.1365-2958.2002.03087.x
  35. Kayingo, G. and Wong, B. 2005. The map kinase hog1p differentially regulates stress-induced production and accumulation of glycerol and d-arabitol in Candida albicans. Microbiology 151:2987-2999. https://doi.org/10.1099/mic.0.28040-0
  36. Ketela, T., Green, R. and Bussey, H. 1999. Saccharomyces cerevisiae Mid2p is a potential cell wall stress sensor and upstream activator of the PKC1-MPK1 cell integrity pathway. J. Bacteriol. 181:3330-3340.
  37. Kiel, C., Yus, E. and Serrano, L. 2010. Engineering signal transduction pathways. Cell 140:33-47. https://doi.org/10.1016/j.cell.2009.12.028
  38. Kohut, G., dám, A. L., Fazekas, B. and Hornok, L. 2009. N-starvation stress induced fum gene expression and fumonisin production is mediated via the hog-type mapk pathway in Fusarium proliferatum. Int. J. Food Microbiol. 130:65-69. https://doi.org/10.1016/j.ijfoodmicro.2009.01.002
  39. Kojima, K., Kikuchi, T., Takano, Y., Oshiro, E. and Okuno, T. 2002. The mitogen-activated protein kinase gene maf1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium. Mol. Plant-Microbe. Interact. 15:1268-1276. https://doi.org/10.1094/MPMI.2002.15.12.1268
  40. Kojima, K., Takano, Y., Yoshimi, A., Tanaka, C., Kikuchi, T. and Okuno, T. 2004. Fungicide activity through activation of a fungal signalling pathway. Mol. Microbiol. 53:1785-1796. https://doi.org/10.1111/j.1365-2958.2004.04244.x
  41. Kraus, P. R., Fox, D. S., Cox, G. M. and Heitman, J. 2003. The Cryptococcus neoformans map kinase mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Mol. Microbiol. 48:1377-1387. https://doi.org/10.1046/j.1365-2958.2003.03508.x
  42. Kumar, A., Scher, K., Mukherjee, M., Pardovitz-Kedmi, E., Sible, G. V., Singh, U. S., Kale, S. P., Mukherjee, P. K. and Horwitz, B. A. 2010. Overlapping and distinct functions of two Trichoderma virens map kinases in cell-wall integrity, antagonistic properties and repression of conidiation. Biochem. Biophys. Res. Commun. 398:765-770. https://doi.org/10.1016/j.bbrc.2010.07.020
  43. Lawrence, C. L., Botting, C. H., Antrobus, R. and Coote, P. J. 2004. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: Regulating adaptation to citric acid stress. Mol. Cell. Biol. 24:3307-3323. https://doi.org/10.1128/MCB.24.8.3307-3323.2004
  44. Lengeler, K. B., Davidson, R. C., D'souza, C., Harashima, T., Shen, W. C., Wang, P., Pan, X., Waugh, M. and Heitman, J. 2000. Signal transduction cascades regulating fungal development and virulence. Microbiol. Mol. Biol. Rev. 64:746-785. https://doi.org/10.1128/MMBR.64.4.746-785.2000
  45. Lev, S. and Horwitz, B. A. 2003. A mitogen-activated protein kinase pathway modulates the expression of two cellulase genes in Cochliobolus heterostrophus during plant infection. Plant Cell 15:835-844. https://doi.org/10.1105/tpc.010546
  46. Lev, S., Sharon, A., Hadar, R., Ma, H. and Horwitz, B. A. 1999. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: Diverse roles for mitogen-activated protein kinase homologs in foliar pathogens. Proc. Natl. Acad Sci. USA 96:13542-13547. https://doi.org/10.1073/pnas.96.23.13542
  47. Li, D., Piotr Bobrowicz, Heather H. Wilkinson and Daniel J. Ebbole 2005. A mitogen-activated protein kinase pathway essential for mating and contributing to vegetative growth in Neurospora crassa. Genetics 170:1091-1104. https://doi.org/10.1534/genetics.104.036772
  48. Lin, C. H. and Chung, K. R. 2010. Specialized and shared functions of the histidine kinase- and hog1 map kinase-mediated signaling pathways in Alternaria alternata, a filamentous fungal pathogen of citrus. Fungal Genet. Biol. 47:818-827. https://doi.org/10.1016/j.fgb.2010.06.009
  49. Liu, W., Leroux, P. and Fillinger, S. 2008. The hog1-like map kinase sak1 of Botrytis cinerea is negatively regulated by the upstream histidine kinase bos1 and is not involved in dicarboximide- and phenylpyrrole-resistance. Fungal Genet. Biol. 45:1062-1074. https://doi.org/10.1016/j.fgb.2008.04.003
  50. Liu, W., Soulie, M. C., Perrino, C. and Fillinger, S. 2011. The osmosensing signal transduction pathway from Botrytis cinerea regulates cell wall integrity and map kinase pathways control melanin biosynthesis with influence of light. Fungal Genet. Biol. 48:377-387. https://doi.org/10.1016/j.fgb.2010.12.004
  51. Maeda, T., Wurgler-Murphy, S. M. and Saito, H. 1994. A twocomponent system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242-245. https://doi.org/10.1038/369242a0
  52. Marques, J. M., Rodrigues, R. J., De Magalhaes-Sant'ana, A. C. and Goncalves, T. 2006. Saccharomyces cerevisiae hog1 protein phosphorylation upon exposure to bacterial endotoxin. J. Biol. Chem. 281:24687-24694. https://doi.org/10.1074/jbc.M603753200
  53. May, G. S., Xue, T., Kontoyiannis, D. P. and Gustin, M. C. 2005. Mitogen activated protein kinases of Aspergillus fumigatus. Med. Mycol. 43 Suppl 1:S83-86.
  54. Mehrabi, R., Van Der Lee, T., Waalwijk, C. and Gert, H. J. 2006a. Mgslt2, a cellular integrity map kinase gene of the fungal wheat pathogen Mycosphaerella graminicola, is dispensable for penetration but essential for invasive growth. Mol. Plant-Microbe Interact. 19:389-398. https://doi.org/10.1094/MPMI-19-0389
  55. Mehrabi, R., Zwiers, L. H., De Waard, M. A. and Kema, G. H. 2006b. Mghog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola. Mol Plant-Microbe Interact 19:1262-1269. https://doi.org/10.1094/MPMI-19-1262
  56. Mendoza-Mendoza, A. 2003. Enhanced biocontrol activity of trichoderma through inactivation of a mitogen-activated protein kinase. Proc. Nat. Acad. Sci. 100:15965-15970. https://doi.org/10.1073/pnas.2136716100
  57. Mey, G., Held, K., Scheffer, J., Tenberge, K. B. and Tudzynski, P. 2002a. Cpmk2, an slt2-homologous mitogen-activated protein (map) kinase, is essential for pathogenesis of Claviceps purpurea on rye: Evidence for a second conserved pathogenesisrelated map kinase cascade in phytopathogenic fungi. Mol. Microbiol. 46:305-318. https://doi.org/10.1046/j.1365-2958.2002.03133.x
  58. Mey, G., Oeser, B., Lebrun, M. H. and Tudzynski, P. 2002b. The biotrophic, non-appressorium-forming grass pathogen Claviceps purpurea needs a fus3/pmk1 homologous mitogen-activated protein kinase for colonization of rye ovarian tissue. Mol. Plant-Microbe Interact. 15:303-312. https://doi.org/10.1094/MPMI.2002.15.4.303
  59. Moriwaki, A., Kihara, J., Mori, C. and Arase, S. 2007. A map kinase gene, bmk1, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae. Microbiol. Res. 162:108-114. https://doi.org/10.1016/j.micres.2006.01.014
  60. Moriwaki, A., Kubo, E., Arase, S. and Kihara, J. 2006. Disruption ofsrm1, a mitogen-activated protein kinase gene, affects sensitivity to osmotic and ultraviolet stressors in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol. Lett. 257:253-261. https://doi.org/10.1111/j.1574-6968.2006.00178.x
  61. Mukherjee, P. K., Latha, J., Hadar, R. and Horwitz, B. A. 2003. TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryot. Cell 2:446-455. https://doi.org/10.1128/EC.2.3.446-455.2003
  62. Muller, P., Aichinger, C., Feldbrugge, M. and Kahmann, R. 1999. The map kinase kpp2 regulates mating and pathogenic development in Ustilago maydis. Mol. Microbiol. 34:1007-1017. https://doi.org/10.1046/j.1365-2958.1999.01661.x
  63. Navarro-Garcia, F., Alonso-Monge, R., Rico, H., Pla, J., Sentandreu, R. and Nombela, C. 1998. A role for the map kinase gene mkc1 in cell wall construction and morphological transitions in Candida albicans. Microbiology 144 ( Pt 2):411-424. https://doi.org/10.1099/00221287-144-2-411
  64. Navarro-Garcia, F., Sanchez, M., Pla, J. and Nombela, C. 1995. Functional characterization of the mkc1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol. Cell. Biol. 15:2197-2206. https://doi.org/10.1128/MCB.15.4.2197
  65. Olmedo-Monfil, V., Mendoza-Mendoza, A., Gomez, I., Cortes, C. and Herrera-Estrella, A. 2002. Multiple environmental signals determine the transcriptional activation of the mycoparasitism related gene prb1 in Trichoderma atroviride. Mol. Genet. Genomics 267:703-712. https://doi.org/10.1007/s00438-002-0703-4
  66. Park, S. M., Choi, E. S., Kim, M. J., Cha, B. J., Yang, M. S. and Kim, D. H. 2004. Characterization of hog1 homologue, cpmk1, from Fryphonectria parasitica and evidence for hypovirus- mediated perturbation of its phosphorylation in response to hypertonic stress. Mol. Microbiol. 51:1267-1277. https://doi.org/10.1111/j.1365-2958.2004.03919.x
  67. Rauyaree, P., Ospina-Giraldo, M. D., Kang, S., Bhat, R. G., Subbarao, K. V., Grant, S. J. and Dobinson, K. F. 2005. Mutations in vmk1, a mitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity in Verticillium dahliae. Curr. Genet. 48:109-116. https://doi.org/10.1007/s00294-005-0586-0
  68. Reyes, G., Romans, A., Nguyen, C. K. and May, G. S. 2006. Novel mitogen-activated protein kinase mpkc of Aspergillus fumigatus is required for utilization of polyalcohol sugars. Eukaryot. Cell 5:1934-1940. https://doi.org/10.1128/EC.00178-06
  69. Romero-Martinez, R., Wheeler, M., Guerrero-Plata, A., Rico, G. and Torres-Guerrero, H. 2000. Biosynthesis and functions of melanin in Sporothrix schenckii. Infect. Immun. 68:3696-3703. https://doi.org/10.1128/IAI.68.6.3696-3703.2000
  70. Rui, O. and Hahn, M. 2007. The slt2-type map kinase bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Mol. Plant Pathol. 8:173-184. https://doi.org/10.1111/j.1364-3703.2007.00383.x
  71. Ruiz-Roldan, M. C., Maier, F. J. and Schafer, W. 2001. Ptk1, a mitogen-activated-protein kinase gene, is required for conidiation, appressorium formation, and pathogenicity of Pyrenophora teres on barley. Mol. Plant-Microbe Interact. 14:116-125. https://doi.org/10.1094/MPMI.2001.14.2.116
  72. Scott, D. C. 2009. The cell wall integrity-associated MAP kinase homolog, AbSlt2 in the necrotrophic fungus Alternaria brassicicola is required for pathogenicity of Brassicas. Masters Thesis, Virginia Polytechnic Institute and State University. Available at: http://scholar.lib.vt.edu/thesis/available/etd-02102009-234303.
  73. Segmuller, N., Ellendorf, U., Tudzynski, B. and Tudzynski, P. 2006. Bcsak1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot. Cell 6:211-221.
  74. Sobiya, S., Ruqeyah, A. M. and Shazia, S. 2012. Cymbopogon citrates: A remedy to control selected Alternaria species J. Med. Plants Res. 6:1879-1885.
  75. Solomon, P. S., Waters, O. D. C., Simmonds, J., Cooper, R. M. and Oliver, R. P. 2005. The mak2 map kinase signal transduction pathway is required for pathogenicity in Stagonospora nodorum. Curr. Genet. 48:60-68. https://doi.org/10.1007/s00294-005-0588-y
  76. Sotelo, J. and Rodriguez-Gabriel, M. A. 2006. Mitogen-activated protein kinase hog1 is essential for the response to arsenite in Saccharomyces cerevisiae. Eukaryot. Cell 5:1826-1830. https://doi.org/10.1128/EC.00225-06
  77. Takano, Y., Kikuchi, T., Kubo, Y., Hamer, J. E., Mise, K. and Furusawa, I. 2000. The Colletotrichum lagenarium map kinase gene cmk1 regulates diverse aspects of fungal pathogenesis. Mol. Plant-Microbe Interact. 13:374-383. https://doi.org/10.1094/MPMI.2000.13.4.374
  78. Valiante, V., Heinekamp, T., Jain, R., Härtl, A. and Brakhage, A. A. 2008. The mitogen-activated protein kinase mpka of Aspergillus fumigatus regulates cell wall signaling and oxidative stress response. Fungal Genet. Biol. 45:618-627. https://doi.org/10.1016/j.fgb.2007.09.006
  79. Verma, P. R. and Saharan, G. S. 1994. Monograph on Alternaria diseases of crucifers. Agriculture Canada Research Station, Saskatoon, Technical Bulletin No.1994-6E: 162.
  80. Winkler, A., Arkind, C., Mattison, C. P., Burkholder, A., Knoche, K. and Ota, I. 2002. Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot. Cell 1:163-173. https://doi.org/10.1128/EC.1.2.163-173.2002
  81. Xu, J. R. and Hamer, J. E. 1996. Map kinase and camp signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 10:2696-2706. https://doi.org/10.1101/gad.10.21.2696
  82. Xu, J. R., Staiger, C. J. and Hamer, J. E. 1998. Inactivation of the mitogen-activated protein kinase mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc. Nat.l Acad. Sci. USA 95:12713-12718. https://doi.org/10.1073/pnas.95.21.12713
  83. Xue, T., Nguyen, C. K., Romans, A. and May, G. S. 2004. A mitogen- activated protein kinase that senses nitrogen regulates conidial germination and growth in Aspergillus fumigatus. Eukaryot. Cell 3:557-560. https://doi.org/10.1128/EC.3.2.557-560.2004
  84. Yago, J. I., Lin, C. H. and Chung, K. R. 2011. The slt2 mitogenactivated protein kinase-mediated signalling pathway governs conidiation, morphogenesis, fungal virulence and production of toxin and melanin in the tangerine pathotype of Alternaria alternata. Mol. Plant Pathol. 12:653-665. https://doi.org/10.1111/j.1364-3703.2010.00701.x
  85. Yoshimi, A., Kojima, K., Takano, Y. and Tanaka, C. 2005. Group III histidine kinase is a positive regulator of hog1-type mitogen-activated protein kinase in filamentous fungi. Eukaryot. Cell 4:1820-1828. https://doi.org/10.1128/EC.4.11.1820-1828.2005
  86. Zhang, Y., Zhang, J., Jiang, X., Wang, G., Luo, Z., Fan, Y., Wu, Z. and Pei, Y. 2010. Requirement of a mitogen-activated protein kinase for appressorium formation and penetration of insect cuticle by the entomopathogenic fungus Beauveria bassiana. Appl. Environ. Microb. 76:2262-2270. https://doi.org/10.1128/AEM.02246-09
  87. Zhang, Y., Zhao, J., Fang, W., Zhang, J., Luo, Z., Zhang, M., Fan, Y. and Pei, Y. 2009. Mitogen-activated protein kinase hog1 in the entomopathogenic fungus Beauveria bassiana regulates environmental stress responses and virulence to insects. Appl. Environ. Microb. 75:3787-3795. https://doi.org/10.1128/AEM.01913-08
  88. Zheng, L., Campbell, M., Murphy, J., Lam, S. and Xu, J.-R. 2000. Thebmp1gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Mol. Plant-Microbe Interact. 13:724-732. https://doi.org/10.1094/MPMI.2000.13.7.724