DOI QR코드

DOI QR Code

Growth Promotion of Pepper Plants by Pantoea ananatis B1-9 and its Efficient Endophytic Colonization Capacity in Plant Tissues

  • Kim, Su-Nam (Department of Applied Biology & Environmental Sciences, Gyeongsang National University) ;
  • Cho, Won-Kyong (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Won-Il (Department of Applied Biology & Environmental Sciences, Gyeongsang National University) ;
  • Jee, Hyeong-Jin (Organic Agriculture Division, National Academy of Agricultural Science, Rural Development Administration (RDA)) ;
  • Park, Chang-Seuk (Department of Applied Biology & Environmental Sciences, Gyeongsang National University)
  • Received : 2012.02.20
  • Accepted : 2012.06.20
  • Published : 2012.09.01

Abstract

The bacteria B1-9 that was isolated from the rhizosphere of the green onion could promote growth of pepper, cucumber, tomato, and melon plants. In particular, pepper yield after B1-9 treatment on the seedling was increased about 3 times higher than that of control plants in a field experiment. Partial 16S rDNA sequences revealed that B1-9 belongs to the genus Pantoea ananatis. Pathogenecity tests showed non-pathogenic on kimchi cabbage, carrot, and onion. The functional characterization study demonstrated B1-9's ability to function in phosphate solubilization, sulfur oxidation, nitrogen fixation, and indole-3-acetic acid production. To trace colonization patterns of B1-9 in pepper plant tissues, we used $DRAQ5^{TM}$ fluorescent dye, which stains the DNAs of bacteria and plant cells. A large number of B1-9 cells were found on the surfaces of roots and stems as well as in guard cells. Furthermore, several colonized B1-9 cells resided in inner cortical plant cells. Treatment of rhizosphere regions with strain B1-9 can result in efficient colonization of plants and promote plant growth from the seedling to mature plant stage. In summary, strain B1-9 can be successfully applied in the pepper plantation because of its high colonization capacity in plant tissues, as well as properties that promote efficient plant growth.

Keywords

References

  1. Altomare, C., Norvell, W. A., Bjorkman, T. and Harman, G. E. 1999. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus trichoderma harzianum rifai 1295-22. Appl. Environ. Microbiol. 65:2926-2933.
  2. Barea, J. M., Pozo, M. J., Azcon, R. and Azcon-Aguilar, C. 2005. Microbial co-operation in the rhizosphere. J. Exp. Bot. 56: 1761-1778. https://doi.org/10.1093/jxb/eri197
  3. Benjamins, R. and Scheres, B. 2008. Auxin: the looping star in plant development. Annu. Rev. Plant Biol. 59:443-465. https://doi.org/10.1146/annurev.arplant.58.032806.103805
  4. Bloemberg, G. V. 2007. Microscopic analysis of plant-bacterium interactions using auto fluorescent proteins. Eur. J. Plant Pathol. 119:301-309. https://doi.org/10.1007/s10658-007-9171-3
  5. Bloemberg, G. V. and Lugtenberg, B. J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4:343-350. https://doi.org/10.1016/S1369-5266(00)00183-7
  6. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G. and Thompson, J. D. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31:3497-3500. https://doi.org/10.1093/nar/gkg500
  7. Chernousova, E. Y., Akimov, V. N., Gridneva, E. V., Dubinina, G. A. and Grabovich, M. Y. 2008. Phylogenetic in situ/ex situ analysis of a sulfur mat microbial community from a thermal sulfide spring in the north Caucasus. Microbiology 77:219-223. https://doi.org/10.1134/S002626170802015X
  8. Cho, K. M., Hong, S. Y., Lee, S. M., Kim, Y. H., Kahng, G. G., Lim, Y. P., Kim, H. and Yun, H. D. 2007. Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microb. Ecol. 54: 341-351. https://doi.org/10.1007/s00248-007-9208-3
  9. Choi, O., Kim, J., Ryu, C. and Park, C. S. 2004. Colonization and population changes of a biocontrol agent, Paenibacillus polymyxa E681, in seeds and roots. Plant Pathol. J. 20:97-102. https://doi.org/10.5423/PPJ.2004.20.2.097
  10. Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clement, C. and Ait Barka, E. 2005. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71:1685-1693. https://doi.org/10.1128/AEM.71.4.1685-1693.2005
  11. Coutinho, T. A. and Venter, S. N. 2009. Pantoea ananatis: an unconventional plant pathogen. Mol. Plant Pathol. 10:325-335. https://doi.org/10.1111/j.1364-3703.2009.00542.x
  12. Da Costa, M., Bach, L., Landrieu, I., Bellec, Y., Catrice, O., Brown, S., De Veylder, L., Lippens, G., Inze, D. and Faure, J. D. 2006. Arabidopsis PASTICCINO2 is an antiphosphatase involved in regulation of cyclin-dependent kinase A. Plant Cell 18:1426-1437. https://doi.org/10.1105/tpc.105.040485
  13. Dobereiner, J., Urquiaga, S. and Boddey, R. M. 1995. Alternatives for nitrogen nutrition of crops in tropical agriculture. Fertilizer Res. 42:339-346. https://doi.org/10.1007/BF00750526
  14. Domenech, J., Reddy, M. S., Kloepper, J. W., Ramos, B. and Gutierrez-Mañero, J. 2006. Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Biocontrol 51:245-258. https://doi.org/10.1007/s10526-005-2940-z
  15. Dubnau, D. 1999. DNA uptake in bacteria. Annu. Rev. Microbiol. 53:217-244. https://doi.org/10.1146/annurev.micro.53.1.217
  16. Enya, J., Shinohara, H., Yoshida, S., Tsukiboshi, T., Negishi, H., Suyama, K. and Tsushima, S. 2007. Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents. Microb. Ecol. 53:524-536. https://doi.org/10.1007/s00248-006-9085-1
  17. Halda-Alija, L. 2003. Identification of indole-3-acetic acid producing freshwater wetland rhizosphere bacteria associated with Juncus effusus L. Can. J. Microbiol. 49:781-787. https://doi.org/10.1139/w03-103
  18. Hedden, P. and Kamiya, Y. 1997. Gibberellin Biosynthesis: enzymes, genes and their regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:431-460. https://doi.org/10.1146/annurev.arplant.48.1.431
  19. Herrero, M., Quiros, C., Garcia, L. A. and Diaz, M. 2006. Use of flow cytometry to follow the physiological states of microorganisms in cider fermentation processes. Appl. Environ. Microbiol. 72:6725-6733. https://doi.org/10.1128/AEM.01183-06
  20. Joo, G. J., Kim, Y. M., Kim, J. T., Rhee, I. K., Kim, J. H. and Lee, I. J. 2005. Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J. Microbiol. 43:510-515.
  21. Joo, G. J., Kim, Y. M., Lee, I. J., Song, K. S. and Rhee, I. K. 2004. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol. Lett. 26:487-491. https://doi.org/10.1023/B:BILE.0000019555.87121.34
  22. Kang, S. H., Cho, H. S., Cheong, H., Ryu, C. M., Kim, J. F. and Park, S. H. 2007. Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper Capsicum annuum L. J. Microbiol. Biotechnol. 17:96-103.
  23. Kim, H. J., Lee, J. H., Kang, B. R., Rong, X., McSpadden Gardener, B. B., Ji, H. J., Park, C. S. and Kim, Y. C. 2012. Draft genome sequence of Pantoea ananatis B1-9, a nonpathogenic plant growth-promoting bacterium. J. Bacteriol. 194:729. https://doi.org/10.1128/JB.06484-11
  24. Kim, J. W., Choi, O. H., Kang, J. H., Ryu, C. M., Jeong, M. J., Kim, J. W. and Park, C. S. 1998. Tracing of some root colonizing Pseudomonas in the rhizosphere using lux Gene introduced bacteria. Plant Pathol. J. 14:13-18.
  25. Kim, W. I., Cho, W. K., Kim, S. N., Chu, H., Ryu, K. Y., Yun, J. C. and Park, C. S. 2011. Genetic diversity of cultivable plant growth-promoting rhizobacteria in Korea. J. Microbiol. Biotechnol. 21:777-790. https://doi.org/10.4014/jmb.1101.01031
  26. Kloepper, J. W. 1995. Plant growth-promoting rhizobacteria (other systems). In: Azospirillum/plant Associations, Y. Okon, ed. CRC Press, Boca Raton. pp. 137-166.
  27. Kloepper, J. W., Zablotowicz, R. M., Tipping, E. M. and Lifshitz, R. 1991. Plant growth promotion mediated by bacterial rhizosphere colonizers. In The Rhizosphere and Plant Growth, D. L. Keister and P. B. Cregan ed. Kluwer Academic Publishers, Dordrecht, The Netherlands. pp. 315-326.
  28. Lambertsen, L., Sternberg, C. and Molin, S. 2004. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ. Microbiol. 6:726-732. https://doi.org/10.1111/j.1462-2920.2004.00605.x
  29. Lucas García, J. A., Probanza, A., Ramos, B., Ruiz Palomino, M. and Gutiérrez Mañero, F. J. 2004. Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie 24: 169-176. https://doi.org/10.1051/agro:2004020
  30. Martin, R. M., Leonhardt, H. and Cardoso, M. C. 2005. DNA labeling in living cells. Cytometry A 67:45-52.
  31. Morohoshi, T., Nakamura, Y., Yamazaki, G., Ishida, A., Kato, N. and Ikeda, T. 2007. The plant pathogen Pantoea ananatis produces N-acylhomoserine lactone and causes center rot disease of onion by quorum sensing. J. Bacteriol. 189:8333-8338. https://doi.org/10.1128/JB.01054-07
  32. Ping, L. and Boland, W. 2004. Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci. 9:263-266. https://doi.org/10.1016/j.tplants.2004.04.008
  33. Poonguzhali, S., Madhaiyan, M., Yim, W. J., Kim, K. A. and Sa, T. M. 2008. Colonization pattern of plant root and leaf surfaces visualized by use of green-fluorescent-marked strain of Methylobacterium suomiense and its persistence in rhizosphere. Appl. Microbiol. Biotechnol. 78:1033-1043. https://doi.org/10.1007/s00253-008-1398-1
  34. Prieto, P. and Mercado-Blanco, J. 2008. Endophytic colonization of olive roots by the biocontrol strain Pseudomonas fluorescens PICF7. FEMS Microbiol. Ecol. 64:297-306. https://doi.org/10.1111/j.1574-6941.2008.00450.x
  35. Rijavec, T., Lapanje, A., Dermastia, M. and Rupnik, M. 2007. Isolation of bacterial endophytes from germinated maize kernels. Can. J. Microbiol. 53:802-808. https://doi.org/10.1139/W07-048
  36. Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J. and Dowling, D. N. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278:1-9. https://doi.org/10.1111/j.1574-6968.2007.00918.x
  37. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026. https://doi.org/10.1104/pp.103.026583
  38. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W. and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 100:4927-4932. https://doi.org/10.1073/pnas.0730845100
  39. Sawabe, T., Fukui, Y. and Stabb, E. V. 2006. Simple conjugation and outgrowth procedures for tagging vibrios with GFP, and factors affecting the stable expression of the gfp tag. Lett. Appl. Microbiol. 43:514-522. https://doi.org/10.1111/j.1472-765X.2006.01992.x
  40. Singh, M. K., Kushwaha, C. and Singh, R. K. 2009. Studies on endophytic colonization ability of two upland rice endophytes, Rhizobium sp. and Burkholderia sp. using green fluorescent protein reporter. Curr. Microbiol. 59:240-243. https://doi.org/10.1007/s00284-009-9419-6
  41. Staley, T. E., Lawrence, E. G. and Drahos, D. J. 1997. Variable specificity of Tn7::lacZY insertion into the chromosome of root-colonizing Pseudomonas putida strains. Mol. Ecol. 6:85-87. https://doi.org/10.1046/j.1365-294X.1997.00157.x
  42. Steenhoudt, O. and Vanderleyden, J. 2000. Azospirillum, a freeliving nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 24:487-506. https://doi.org/10.1111/j.1574-6976.2000.tb00552.x
  43. Taghavi, S., Garafola, C., Monchy, S., Newman, L., Hoffman, A., Weyens, N., Barac, T., Vangronsveld, J. and van der Lelie, D. 2009. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl. Environ. Microbiol. 75:748-757. https://doi.org/10.1128/AEM.02239-08
  44. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis MEGA. software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  45. Thomas, P., Kumari, S., Swarna, G. K. and Gowda, T. K. 2007. Papaya shoot tip associated endophytic bacteria isolated from in vitro cultures and host-endophyte interaction in vitro and in vivo. Can. J. Microbiol. 53:380-390. https://doi.org/10.1139/W06-141
  46. Thomashow, L. S. 1996. Biological control of plant root pathogens. Curr. Opin. Biotechnol. 7:343-347. https://doi.org/10.1016/S0958-1669(96)80042-5
  47. Toth, I. K., Bel, K. S., Holeva, M. C. and Birch, P. R. J. 2003. Soft rot erwiniae: From genes to genomes. Mol. Plant Pathol. 4:17-30. https://doi.org/10.1046/j.1364-3703.2003.00149.x
  48. Ugoji, E. O., Laing, M. D. and Hunter, C. H. 2005. Colonization of Bacillus spp. on seeds and in plant rhizoplane. J. Environ. Biol. 26:459-466.
  49. Walker, T. S., Bais, H. P., Grotewold, E. and Vivanco, J. M. 2003. Root exudation and rhizosphere biology. Plant Physiol. 132: 44-51. https://doi.org/10.1104/pp.102.019661
  50. Watanabe, K. and Sato, M. 1999. Gut colonization by an ice nucleation active bacterium, Erwinia Pantoea ananas reduces the cold hardiness of mulberry pyralid larvae. Cryobiology 38: 281-289. https://doi.org/10.1006/cryo.1999.2169
  51. Weyens, N., van der Lelie, D., Taghavi, S., Newman, L. and Vangronsveld, J. 2009. Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol. 27:591-598. https://doi.org/10.1016/j.tibtech.2009.07.006
  52. Wielbo, J. and Skorupska, A. 2001. Construction of improved vectors and cassettes containing gusA and antibiotic resistance genes for studies of transcriptional activity and bacterial localization. J. Microbiol. Methods 45:197-205. https://doi.org/10.1016/S0167-7012(01)00244-5
  53. Wirth, R., Friesenegger, A. and Fiedler, S. 1989. Transformation of various species of gram-negative bacteria belonging to 11 different genera by electroporation. Mol. Gen. Genet. 216: 175-177. https://doi.org/10.1007/BF00332248

Cited by

  1. The ecological interaction of the mountain pine beetle and jack pine budworm in the boreal forest vol.86, pp.6, 2010, https://doi.org/10.5558/tfc86766-6
  2. Breeding eastern white pine for blister rust resistance: A review of progress in Ontario vol.85, pp.5, 2009, https://doi.org/10.5558/tfc85745-5
  3. Pantoea ananatis Genetic Diversity Analysis Reveals Limited Genomic Diversity as Well as Accessory Genes Correlated with Onion Pathogenicity vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.00184