DOI QR코드

DOI QR Code

Genetic Diversity Among Pseudomonas syringae pv. morsprunorum Isolates from Prunus mume in Korea and Japan by Comparative Sequence Analysis of 16S rRNA Gene

  • 투고 : 2012.03.04
  • 심사 : 2012.06.28
  • 발행 : 2012.09.01

초록

Genetic diversity among Pseudomonas syringae pv. morsprunorum isolates from Prunus mume in Korea and Japan was investigated by comparative sequence analysis of the 16S rRNA gene. The strains included 24 field isolates recovered from P. mume in Korea along with seven Japanese strains. Two strains isolated from P. salicina in Japan, one strain from P. avium in the United Kingdom, and the pathotype strain were also used for comparison with their 16S rRNA gene sequences. Nearly complete 16S rRNA gene sequences were sequenced in all 35 strains, and three sequence types, designated types I, II and III, were identified. Eleven strains consisting of five Korean isolates, five Japanese strains, and one strain from the United Kingdom belonged to type I, whereas the pathotype strain and another 19 Korean isolates belonged to type III. Another four Japanese strains belonged to type II. Type I showed 98.9% sequence homology with type III. Type I and II had only two heterogeneous bases. The 16S rRNA sequence types were correlated with the races of P. syringae pv. morsprunorum. Type I and II strains belonged to race 1, whereas type III isolates were included in race 2. Sequence analyses of the 16S rRNA gene from P. syringae pv. morsprunorum were useful in identifying the races and can further be used for epidemiological surveillance of this pathogen.

키워드

참고문헌

  1. Boudon, S., Manceau, C. and Nottéghem, J.-L. 2005. Structure and origin of Xanthomonas arboricola pv. pruni populations causing bacterial spot of stone fruit trees in Western Europe. Phytopathology 95:1081-1088. https://doi.org/10.1094/PHYTO-95-1081
  2. Burkowicz, A. and Rudolph, A. 1994. Evaluation of pathogenicity and of cultural and biochemical tests for identification of Pseudomonas syringae pathovars syringae, morsprunorum and pericae from fruit trees. J. Phytopathol. 141:59-76. https://doi.org/10.1111/j.1439-0434.1994.tb01446.x
  3. Chakravorty, S., Helb, D., Burday, M., Connell, N. and Alland, D. 2007. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Method. 69:330-339. https://doi.org/10.1016/j.mimet.2007.02.005
  4. Freigoun, S. O. and Crosse, J. E. 1975. Host relations and distribution of a physiological and pathological variant of Pseudomonas morsprunorum. Ann. Appl. Biol. 81:317-330. https://doi.org/10.1111/j.1744-7348.1975.tb01647.x
  5. Gilbert, V., Legros, F., Maraite, H. and Bultreys, A. 2009. Genetic analyses of Pseudomonas syringae isolates from Belgian fruit orchards reveal genetic variability and isolate-host relationships within the pathovar syringae, and help identify both races of the pathovar morsprunorum. Eur. J. Plant Pathol. 124:199-218. https://doi.org/10.1007/s10658-008-9406-y
  6. Jones, A. L. 1971. Bacterial canker of sweet cherry in Michigan. Plant Dis. Rep. 55:961-965.
  7. Kim, D. Y., Han, H. S., Koh, Y. J. and Jung, J. S. 2005. Bacterial canker of Japanese apricot (Prunus mume) caused by Pseudomonas syringae pv. morsprunorum. Res. Plant Dis. 11:135-139 (in Korean). https://doi.org/10.5423/RPD.2005.11.2.135
  8. Korean Society of Plant Pathology. 2004. List of plant disease in Korea. 4th ed. The Korean Society of Plant Pathology, Suwon, Korea. 342-343 pp. (in Korean).
  9. Lane, D. J. 1991. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics, ed. by E. Stackebrandt and M. Goodfellow, pp. 115-175. Wiley, New York, USA.
  10. Latorre, B. A. and Jones, A. L. 1979. Pseudomonas morsprunorum, the cause of bacterial canker of sour cherry in Michigan, and its epiphytic association with P. syringae. Phytopathology 69:335-339. https://doi.org/10.1094/Phyto-69-335
  11. Li, X., Dorsch, M., Del Dot, T., Sly, L. I., Stackebrandt, E. and Hayward, A. C. 1993. Phylogenetic studies of the rRNA group II pseudomonads based on 16S rRNA gene sequences. J. Appl. Bacteriol. 74:324-329. https://doi.org/10.1111/j.1365-2672.1993.tb03032.x
  12. Louws, F. J., Fulbright, D. W., Stephens, C. T. and de Bruijn, F. J. 1994. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl. Environ. Microbiol. 60:2286-2295.
  13. Renick, L. J., Cogal, A. G. and Sundin, G. W. 2008. Phenotypic and genetic analysis of epiphytic Pseudomonas syringae populations from sweet cherry in Michigan. Plant Dis. 92:372-378. https://doi.org/10.1094/PDIS-92-3-0372
  14. Roos, I. M. M. and Hattingh, M. J. 1983. Fluorescent pseudomonads associated with bacterial canker of stone fruit in South Africa. Plant Dis. 67:1267-1269. https://doi.org/10.1094/PD-67-1267
  15. Sundin, G. W., Jones, A. L. and Olson, B. D. 1988. Overwintering and population dynamics of Pseudomonas syringae pv. syringae and P. s. pv. morsprunorum on sweet and sour cherry trees. Can. J. Plant Pathol. 10:281-288. https://doi.org/10.1080/07060668809501701
  16. Van de Peer, Y., Chapelle, S. and De Wachter, R. 1996. A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res. 24:3381-3391. https://doi.org/10.1093/nar/24.17.3381
  17. Versalovic, J., Schneider, M., de Bruijin, F. J. and Lupski, J. R. 1994. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Method. Mol. Cell. Biol. 5:25-40.
  18. Vicente, J. G., Alves, J. P., Russell, K. and Roberts, S. J. 2004. Identification and discrimination of Pseudomonas syringae isolates from wild cherry in England. Eur. J. Plant Pathol. 110:337-351. https://doi.org/10.1023/B:EJPP.0000021060.15901.33
  19. Vicente, J. G. and Roberts, S. J. 2007. Discrimination of Pseudomonas syringae isolates from sweet and wild cherry using rep-PCR. Eur. J. Plant Pathol. 117:383-392. https://doi.org/10.1007/s10658-007-9107-y

피인용 문헌

  1. Molecular Characteristics of Pseudomonas syringae pv. actinidiae Strains Isolated in Korea and a Multiplex PCR Assay for Haplotype Differentiation vol.30, pp.1, 2014, https://doi.org/10.5423/PPJ.NT.09.2013.0095
  2. Genetic and pathogenic diversity of Pseudomonas syringae strains isolated from cucurbits vol.141, pp.1, 2015, https://doi.org/10.1007/s10658-014-0524-4
  3. Definition of Plant-Pathogenic Pseudomonas Genomospecies of the Pseudomonas syringae Complex Through Multiple Comparative Approaches vol.104, pp.12, 2014, https://doi.org/10.1094/PHYTO-12-13-0344-R
  4. Characterisation of Pseudomonas syringae isolates from apricot orchards in north-eastern Italy vol.151, pp.4, 2018, https://doi.org/10.1007/s10658-018-1424-9