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FALLING SUBALGEBRAS AND IDEALS IN BH-ALGEBRAS

Eun Mi Kim a and Sun Shin Ahn b, ∗

Abstract. Based on the theory of a falling shadow which was first formulated by
Wang([14]), a theoretical approach of the ideal structure in BH-algebras is estab-
lished. The notions of a falling subalgebra, a falling ideal, a falling strong ideal, a
falling n-fold strong ideal and a falling translation ideal of a BH-algebra are intro-
duced. Some fundamental properties are investigated. Relations among a falling
subalgebra, a falling ideal and a falling strong ideal, a falling n-fold strong ideal are
stated. A relation between a fuzzy subalgebra/ideal and a falling subalgebra/ideal
is provided.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras
and BCI-algebras ([3,4]). It is known that the class of BCK-algebras is a proper
subclass of the class of BCI-algebras. BCK-algebras have some connections with
other areas: D. Mundici [8] proved MV -algebras are categorically equivalent to
bounded commutative algebra, and J. Meng [9] proved that implicative commuta-
tive semigroups are equivalent to a class of BCK-algebras. Y. B. Jun, E. H. Roh,
and H. S. Kim [5] introduced the notion of a BH-algebra, which is a generaliza-
tion of BCK/BCI-algebras. They defined the notions of ideal, maximal ideal and
translation ideal and investigated some properties. E. H. Roh and S. Y. Kim [11]
estimated the number of BH∗-subalgebras of order i in a transitive BH∗-algebras
by using Hao’s method. S. S. Ahn and J. H. Lee ([2]) defined the notion of strong
ideals in BH-algebra and studied some properties of it. They considered the notion
of a rough set in BH-algebras. S. S. Ahn and E. M. Kim ([1]) introduced the notion
of n-fold strong ideal in BH-algebra and gave some related properties of it.

In this paper we introduced the notions of a falling subalgebra, a falling ideal, a
falling strong ideal, a falling n-fold strong ideal and a falling translation ideal of a
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BH-algebra. We investigate some fundamental properties. Also we give relations
among a falling subalgebra, a falling ideal and a falling strong ideal, a falling n-fold
strong ideal. We study a relation between a fuzzy subalgebra/ideal and a falling
subalgebra/ideal.

2. Preliminaries

By a BH-algebra ([5]), we mean an algebra (X; ∗, 0) of type (2,0) satisfying the
following conditions:

(I) x ∗ x = 0,
(II) x ∗ 0 = x,

(III) x ∗ y = 0 and y ∗ x = 0 imply x = y, for all x, y ∈ X.

For brevity, we also call X a BH-algebra. In X we can define an order relation
“ ≤ ” by x ≤ y if and only if x ∗ y = 0. A non-empty subset S of a BH-algebra X

is called a subalgebra of X if, for any x, y ∈ S, x ∗ y ∈ S, i.e., S is a closed under
binary operation.

Definition 2.1 ([5]). A non-empty subset A of a BH-algebra X is called an ideal
of X if it satisfies:

(I1) 0 ∈ A,
(I2) x ∗ y ∈ A and y ∈ A imply x ∈ A, ∀x, y ∈ X.

An ideal A of a BH-algebra X is said to be a translation ideal of X if it satisfies:

(I3) x ∗ y ∈ A and y ∗ x ∈ A imply (x ∗ z) ∗ (y ∗ z) ∈ A and (z ∗ x) ∗ (z ∗ y) ∈ A,
∀x, y, z ∈ X.

Obviously, {0} and X are ideals of X. For any elements x and y of a BH-algebra
X, x ∗ yn denotes (· · · ((x ∗ y) ∗ y) ∗ · · · ) ∗ y in which y occurs n times.

Definition 2.2. A non-empty subset A of a BH-algebra X is called a strong ideal
([2]) of X if it satisfies (I1) and

(I4) (x ∗ y) ∗ z ∈ A and y ∈ A imply x ∗ z ∈ A for all x, y, z ∈ X.

A non-empty subset A of a BH-algebra X is called an n-fold strong ideal ([1]) of X

if it satisfies (I1) and

(I5) for every x, y, z ∈ X there exists a natural number n such that x ∗ zn ∈ A

whenever (x ∗ y) ∗ zn ∈ A and y ∈ A.

Definition 2.3 ([11]). A BH-algebra X is called a BH∗-algebra if it satisfies the
identity (x ∗ y) ∗ x = 0 for all x, y ∈ X.
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Definition 2.4. A BH-algebra (X; ∗, 0) is said to be transitive if x ∗ y = 0 and
y ∗ z = 0 imply x ∗ z = 0 for all x, y, z ∈ X.

We now review some fuzzy logic concepts. A fuzzy set in a set X is a function
µ : X → [0, 1]. For a fuzzy set µ in X and t ∈ [0, 1], define U(µ; t) to be the set
U(µ; t) = {x ∈ X|µ(x) ≥ t}, which is called a level subset of µ.

Definition 2.5. A fuzzy set µ in a BH-algebra X is called a fuzzy BH-ideal (here
call it a fuzzy ideal) ([6]) of X if

(FI1) µ(0) ≥ µ(x), ∀x ∈ X,
(FI2) µ(x) ≥ min{µ(x ∗ y), µ(y)}, ∀x, y ∈ X.

A fuzzy set µ in a BH-algebra X is called a fuzzy translation BH-ideal([6]) of X if
it satisfies (FI1), (FI2) and

(FI3) min{µ((x∗z)∗(y∗z)), µ((z∗x)∗(z∗y))} ≥ min{µ(x∗y), µ(y∗x)}, ∀x, y, z ∈ X.

A fuzzy set µ in a BH-algebra X is called a fuzzy strong ideal([7]) of X if it satisfies
(FI1) and

(FI4) µ(x ∗ z) ≥ min{µ((x ∗ y) ∗ z), µ(y)}, ∀x, y, z ∈ X.

A fuzzy set µ in a BH-algebra X is called a fuzzy n-fold strong ideal([7]) of X if it
satisfies (FI1) and

(FI5) µ(x ∗ zn) ≥ min{µ((x ∗ y) ∗ zn), µ(y)}, ∀x, y, z ∈ X.

We now display the basic theory on falling shadows. We refer the reader to the
papers [12, 13, 14] for further information regarding the theory of falling shadows.

Given a universe of discourse U, let P(U) denote the power set of U. For each
u ∈ U, let

(2.1) u̇ := {E | u ∈ E and E ⊆ U},

and for each E ∈ P(U), let

(2.2) Ė := {u̇ | u ∈ E}.

An ordered pair (P(U),B) is said to be a hyper-measurable structure on U if B
is a σ-field in P(U) and U̇ ⊆ B. Given a probability space (Ω,A, P ) and a hyper-
measurable structure (P(U),B) on U, a random set on U is defined to be a mapping
ξ : Ω → P(U) which is A-B measurable, that is,

(2.3) (∀C ∈ B) (ξ−1(C) = {ω | ω ∈ Ω and ξ(ω) ∈ C} ∈ A).
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Suppose that ξ is a random set on U. Let

H̃(u) := P (ω | u ∈ ξ(ω)) for each u ∈ U.

Then H̃ is a kind of fuzzy set in U. We call H̃ a falling shadow of the random set ξ,

and ξ is called a cloud of H̃.

For example, (Ω,A, P ) = ([0, 1],A,m), where A is a Borel field on [0, 1] and m is
the usual Lebesgue measure. Let H̃ be a fuzzy set in U and H̃t := {u ∈ U | H̃(u) ≥ t}
be a t-cut of H̃. Then

ξ : [0, 1] → P(U), t 7→ H̃t

is a random set and ξ is a cloud of H̃. We shall call ξ defined above as the cut-cloud
of H̃.

3. Falling Subalgebras/Ideals in BH-algebras

In what follows let X denote a BH-algebra unless otherwise specified.

Definition 3.1. Let (Ω,A, P ) be a probability space, and let

ξ : Ω → P(X),

be a random set. If ξ(ω) is a subalgebra(resp., ideal, strong ideal, n-fold strong ideal
and translation ideal) of a BH-algebra X for any ω ∈ Ω with ξ(ω) 6= ∅, then the
falling shadow H̃ of the random set ξ, i.e.,

H̃(x) = P (ω|x ∈ ξ(ω))

is called a falling subalgebra(resp., falling ideal, falling strong ideal, falling n-fold
ideal and falling translation ideal) of X.

Example 3.2. (1) Let X := {0, 1, 2, 3} be a BH-algebra([5]) with the following
table:

∗ 0 1 2 3
0 0 1 3 0
1 1 0 2 0
2 2 2 0 3
3 3 3 3 0

For a probability space (Ω,A, P ) = ([0, 1],A, m), define a random set ξ : [0, 1] →
P(X) as follows:

ξ : Ω → P(X), t 7→





∅ if t ∈ [0, 0.3),
{0, 1, 2} if t ∈ [0.3, 0.8),
X if t ∈ [0.8, 1].
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Then ξ(t) is an ideal of X for all t ∈ [0, 1]. Hence H̃ is a falling ideal of X. If we
take t ∈ [0.3, 0.8), then ξ(t) = {0, 1, 2} is neither a subalgebra nor a translation ideal
of X since 0 ∗ 2 = 3 /∈ {0, 1, 2} and 1 ∗ 2 = 2, 2 ∗ 1 = 2 ∈ {0, 1, 2}, (1 ∗ 1) ∗ (2 ∗ 1) =
0∗2 = 3 /∈ {0, 1, 2}. Hence H̃ is neither a falling subalgebra nor a falling translation
ideal of X.
(2) Let X := {0, 1, 2} be a BH-algebra([5]) with the following table:

∗ 0 1 2
0 0 0 1
1 1 0 0
2 2 1 0

For a probability space (Ω,A, P ) = ([0, 1],A, m), define a random set ξ : [0, 1] →
P(X) as follows:

ξ : Ω → P(X), t 7→





∅ if t ∈ [0, 0.4),
{0, 1} if t ∈ [0.4, 0.7),
X if t ∈ [0.7, 1].

Then ξ(t) is a subalgebra of X for all t ∈ [0, 1]. Hence H̃ is a falling subalgebra of
X. If we take t ∈ [0.4, 0.7), then ξ(t) = {0, 1} is not an ideal of X since 2∗1 = 1, 1 ∈
{0, 1} and 2 /∈ {0, 1}. Hence H̃ is not a falling ideal of X.
(3) Let X := {0, 1, 2, 3} be a BH-algebra([5]) with the following table:

∗ 0 1 2 3
0 0 1 0 0
1 1 0 0 0
2 2 2 0 3
3 3 3 3 0

For a probability space (Ω,A, P ) = ([0, 1],A, m), define a random set ξ : [0, 1] →
P(X) as follows:

ξ : Ω → P(X), t 7→





∅ if t ∈ [0, 0.2),
{0, 1} if t ∈ [0.2, 0.7),
X if t ∈ [0.7, 1].

Then ξ(t) is both a subalgebra and a translation ideal of X for all t ∈ [0, 1]. Hence
H̃ is both a falling subalgebra and a falling translation ideal of X.

Lemma 3.3 ([6, 7]). A fuzzy set µ in a BH-algebra X is a fuzzy subalgebra(resp.,
fuzzy ideal, fuzzy strong ideal, fuzzy n-fold strong ideal, and fuzzy translation ideal)
of X if and only if for every t ∈ [0, 1], µt is either empty or a subalgebra(resp., ideal,
strong ideal, n-fold strong ideal, and translation ideal) of X.
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Theorem 3.4. Let X be a BH-algebra. Then every fuzzy ideal(resp., fuzzy subal-
gebra, fuzzy strong ideal, fuzzy n-fold strong ideal, and fuzzy translation ideal) of X

is a falling ideal(resp., falling subalgebra, falling strong ideal, falling n-fold strong
ideal, and falling translation ideal) of X.

Proof. Let H̃ be any fuzzy ideal(resp., fuzzy subalgebra, fuzzy strong ideal, fuzzy
n-fold strong ideal, and fuzzy translation ideal) of X. By Lemma 3.3, H̃t is an
ideal(resp., subalgebra, strong ideal, n-fold strong ideal, and translation ideal) of X

for all t ∈ [0, 1]. Let ξ(t) : [0, 1] → P(X) be a random set and ξ(t) = H̃t. Then H̃

is a falling ideal(resp., falling subalgebra, falling strong ideal, falling n-fold strong
ideal, and falling translation ideal) of X. ¤

The converse of Theorem 3.4 is not true in general as seen in general as seen in
the following example.

Example 3.5. Let X := {0, 1, 2, 3, 4} be a BH-algebra([2]) with the following
table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 1 0 0
4 4 3 4 3 0

For a probability space (Ω,A, P ) = ([0, 1],A, m), define a random set ξ : [0, 1] →
P(X) as follows:

ξ : Ω → P(X), t 7→





{0, 1} if t ∈ [0, 0.2),
{0, 2} if t ∈ [0.2, 0.5),
{0, 3, 4} if t ∈ [0.5, 0.8)
X if t ∈ [0.8, 1].

Then ξ(t) is a subalgebra of X for all t ∈ [0, 1] and

H̃(x) =





1 if x = 0,

0.4 if x = 1,

0.5 if x = 2,

0.5 ifx = 3,

0.5 ifx = 4.

Hence H̃ is a falling subalgebra of X, but not a fuzzy subalgebra of X since H̃(3∗2) =
H̃(1) = 0.4 � 0.5 = min{H̃(3), H̃(2)}.
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For a probability space (Ω,A, P ) = ([0, 1],A,m), define a random set η : [0, 1] →
P(X) as follows:

η : Ω → P(X), t 7→





{0} if t ∈ [0, 0.2)
∅ if t ∈ [0.2, 0.3)
{0, 1} if t ∈ [0.3, 0.5),
{0, 2} if t ∈ [0.5, 0.8),
X if t ∈ [0.8, 1].

Then η(t) is an ideal and a subalgebra of X for all t ∈ [0, 1] and

H̃(x) =





0.9 if x = 0,

0.4 if x = 1,

0.5 if x = 2,

0.2 ifx = 3,

0.2 ifx = 4.

Hence H̃ is a falling ideal and a falling subalgebra of X, but not a fuzzy ideal of X

since H̃(3) = 0.2 � 0.4 = min{H̃(3 ∗ 2), H̃(2)}.
Proposition 3.6. In a BH∗-algebra X, every falling ideal of X is a falling subal-
gebra of X.

Proof. Let H̃ be a falling ideal of a BH∗-algebra X. Then ξ(ω) is an ideal of X for
any ω ∈ Ω with ξ(ω) 6= ∅. Let x, y ∈ X be such that x, y ∈ ξ(ω). Since (x∗y)∗x = 0
for any x, y ∈ X, we have (x∗y)∗x = 0 ∈ ξ(ω). It follows from (I2) that x∗y ∈ ξ(ω).
Hence ξ(ω) is a subalgebra of X. Thus H̃ is a falling subalgebra of X. ¤

In a BH-algebra X, Proposition 3.6 is not true in general(see Example 3.2(1)).

Theorem 3.7. In a BH-algebra, every falling n-fold strong ideal is a falling ideal.

Proof. Let H̃ be a falling n-fold strong ideal of a BH-algebra X. Then ξ(ω) is an
n-fold strong ideal of X for any ω ∈ Ω with ξ(ω) 6= ∅. Let x, y, z ∈ X be such that
(x∗y)∗zn ∈ ξ(ω) and y ∈ ξ(ω) for any positive integer n. Putting z := 0 and n := 1
in the above statement, we have x ∗ y = (x ∗ y) ∗ 01 and y ∈ ξ(ω). It follows from
(I5) that x = x ∗ 01 ∈ ξ(ω), i.e., ξ(ω) is an ideal of X. Therefore H̃ is a falling ideal
of X. ¤

Corollary 3.8. In a BH-algebra, every falling strong ideal is a falling ideal.

Proof. Put n := 1 in Theorem 3.7. ¤
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The converse of Corollary 3.8 is not true in general as seen in the following
example.

Example 3.9. Let X := {0, a, b, c, d} be a BH-algebra([2]) with the following
table:

∗ 0 a b c d
0 0 0 0 0 d
a a 0 a 0 0
b b b 0 0 0
c c c a 0 0
d d c d c 0

For a probability space (Ω,A, P ) = ([0, 1],A, m), define a random set ξ : [0, 1] →
P(X) as follows:

ξ : Ω → P(X), t 7→
{
{0, a} if t ∈ [0, 0.4),
X if t ∈ [0.4, 1].

Then ξ(t) is a subalgebra and an ideal of X for all t ∈ [0, 1]. Hence H̃ is a falling
subalgebra and a falling ideal of X. If we take t ∈ [0, 0.4), then ξ(t) = {0, a} is not
a strong ideal of X since (d ∗ a) ∗ b = a ∈ {0, a}, a ∈ {0, a} and d ∗ b = d /∈ {0, a}.
Therefore H̃ is not a falling strong ideal of X.

Corollary 3.10. In a BH∗-algebra, every falling n-fold strong ideal is a falling
subalgebra.

Proof. It follow from Proposition 3.6 and Theorem 3.7. ¤
The converse of Corollary 3.10 is not true in general as seen in the following

example.

Example 3.11. Let X := {0, a, b, c} be a BH∗-algebra([1]) with the following
table:

∗ 0 a b c
0 0 0 0 0
a a 0 0 0
b b b 0 0
c c b b 0

For a probability space (Ω,A, P ) = ([0, 1],A, m), define a random set ξ : [0, 1] →
P(X) as follows:

ξ : Ω → P(X), t 7→





∅ if t ∈ [0, 0.3),
{0, a, b} if t ∈ [0.3, 0.8),
X if t ∈ [0.8, 1].
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Then ξ(t) is an n-fold strong ideal of X for all t ∈ [0, 1] and for every positive integer
n. Hence H̃ is a falling n-fold strong ideal of X for every positive integer n.
Define a random set ξ : [0, 1] → P(x) as follows:

ξ : Ω → P(X), t 7→





{0, c} if t ∈ [0, 0.3),
{0, b} if t ∈ [0.3, 0.8),
X if t ∈ [0.8, 1].

Then ξ(t) is a subalgebra of X for all t ∈ [0, 1]. Hence H̃ is a falling subalgebra of
X. If we take t ∈ [0.3, 0.8), then ξ(t) = {0, b} is not an n-fold strong ideal of X

since (c ∗ b) ∗ 0n = b ∗ 0n = b ∈ {0, b} and c ∗ 0n = c /∈ {0, b}. Thus H̃ is not a falling
n-strong ideal of X for every positive integer n

Theorem 3.12. Let X be a BH-algebra. Assume that the falling shadow H̃ of a
random set ξ : Ω → P(X) is a falling subalgebra of X. Then H̃ is a falling n-fold
strong ideal of X if and only if for each ω ∈ Ω, the following is valid:

(3.1) (∀x ∈ ξ(ω))(∀y, z ∈ X)(y ∗ zn /∈ ξ(ω) ⇒ (y ∗ x) ∗ zn /∈ ξ(ω)).

Proof. Suppose that H̃ is a falling n-fold strong ideal of a BH-algebra X. Then
ξ(ω) is an n-fold strong ideal of X for any ω ∈ Ω with ξ(ω) 6= ∅. Let x, y, z ∈ X

with x ∈ ξ(ω) and y ∗ zn /∈ ξ(ω). If (y ∗ x) ∗ zn ∈ ξ(ω), then y ∗ zn ∈ ξ(ω) since ξ(ω)
is an n-fold strong ideal of X. This is a contradiction. Thus (y ∗ x) ∗ zn /∈ ξ(ω) for
all positive integer n.

Conversely, let H̃ be a falling subalgebra of X satisfying (3.1). Then ξ(ω) is a
subalgebra of X for any ω ∈ Ω with ξ(ω) 6= ∅. Hence 0 ∈ ξ(ω). Let x, y, z ∈ X be
such that (y ∗ x) ∗ zn ∈ ξ(ω) and x ∈ ξ(ω). If y ∗ zn /∈ ξ(ω), then (y ∗ x) ∗ zn /∈ ξ(ω)
by (3.1). This is a contradiction and so H̃ is a falling n-fold strong ideal of X. ¤

Corollary 3.13. Let X be a BH-algebra. Assume that the falling shadow H̃ of a
random set ξ : Ω → P(X) is a falling subalgebra of X. Then H̃ is a falling strong
ideal of X if and only if for each ω ∈ Ω, the following is valid:

(∀x ∈ ξ(ω))(∀y, z ∈ X)(y ∗ z /∈ ξ(ω) ⇒ (y ∗ x) ∗ z /∈ ξ(ω)).

Proof. Put n := 1 in Theorem 3.12. ¤

Corollary 3.14. Let X be a BH-algebra. Assume that the falling shadow H̃ of a
random set ξ : Ω → P(X) is a falling subalgebra of X. Then H̃ is a falling ideal of
X if and only if for each ω ∈ Ω, the following is valid:
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(∀x ∈ ξ(ω))(∀y ∈ X)(y /∈ ξ(ω) ⇒ y ∗ x /∈ ξ(ω)).

Proof. Put z := 0 in Corollary 3.13. ¤

Let (Ω,A, P ) be a probability space and H̃ a falling shadow of a random set
ξ : Ω → P(X). For any x ∈ X, let

(3.2) Ω(x; ξ) := {ω ∈ Ω | x ∈ ξ(ω)}.

Then Ω(x; ξ) ∈ A.

Lemma 3.15. If H̃ is a falling subalgebra of a BH-algebra X, then

(3.3) (∀x ∈ X) (Ω(x; ξ) ⊆ Ω(0; ξ)) .

Proof. If Ω(x; ξ) = ∅, then it is clear. Assume that Ω(x; ξ) 6= ∅ and let ω ∈ Ω be such
that ω ∈ Ω(x; ξ). Then x ∈ ξ(ω), and so 0 = x ∗ x ∈ ξ(ω) since ξ(ω) is a subalgebra
of X. Hence ω ∈ Ω(0; ξ), and therefore Ω(x; ξ) ⊆ Ω(0; ξ) for all x ∈ X. ¤

Combing Proposition 3.6 and Lemma 3.15, we have the following corollary.

Corollary 3.16. If H̃ is a falling ideal of a BH∗-algebra X, then (3.3) is valid.

Theorem 3.17. If H̃ is a falling subalgebra of a BH-algebra X, then

(∀x, y ∈ X)(Ω(x; ξ) ∩ Ω(y; ξ) ⊆ Ω(x ∗ y; ξ)).

Proof. Let ω ∈ Ω(x; ξ) ∩ Ω(y; ξ) for any x, y ∈ X. Then x ∈ ξ(ω) and y ∈ ξ(ω).
Since ξ(ω) is a subalgebra of X, x ∗ y ∈ ξ(ω). Hence ω ∈ Ω(x ∗ y, ξ). Thus
Ω(x; ξ) ∩ Ω(y; ξ) ⊆ Ω(x ∗ y; ξ). ¤

Theorem 3.18. If H̃ is a falling ideal of a BH-algebra X, then

(i) (∀x, y ∈ X)(x ≤ y ⇒ Ω(y; ξ) ⊆ Ω(x; ξ).
(ii) (∀x, y ∈ X)(Ω(x ∗ y; ξ) ∩ Ω(y; ξ) ⊆ Ω(x; ξ).

Proof. (i) Let x, y ∈ X with x ≤ y and ω ∈ Ω(y; ξ). Then y ∈ ξ(ω) and 0 = x ∗ y ∈
ξ(ω). Since ξ(ω) is an ideal of X, x ∈ ξ(ω), i.e., ω ∈ Ω(x; ξ). Hence (i) holds.
(ii) Let ω ∈ Ω(x ∗ y; ξ) ∩ Ω(y; ξ) for any x, y ∈ X. Then x ∗ y ∈ ξ(ω) and y ∈ ξ(ω).
Since ξ(ω) is an ideal of X, x ∈ ξ(ω). Hence ω ∈ Ω(x; ξ). Thus (ii) holds. ¤

Theorem 3.19. If H̃ is a falling n-fold strong ideal of a BH-algebra X, then

(i) (∀x, y, z ∈ X)(x ∗ y ≤ zn ⇒ Ω(y; ξ) ⊆ Ω(x ∗ zn; ξ),
(ii) (∀x, y, z ∈ X)(Ω((x ∗ y) ∗ zn; ξ) ∩ Ω(y; ξ) ⊆ Ω(x ∗ zn; ξ)

for any positive integer n.
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Proof. (i) Let x, y, z ∈ X with ω ∈ Ω(y; ξ) and x ∗ y ≤ zn for any integer n. Then
y ∈ ξ(ω) and (x ∗ y) ∗ zn = 0 ∈ ξ(ω). Since ξ(ω) is an n-fold strong ideal of X, we
have x ∗ zn ∈ ξ(ω). Hence ω ∈ Ω(x ∗ zn; ξ). Thus (i) holds.
(ii) Let x, y, z ∈ X be such that ω ∈ Ω((x∗y)∗zn; ξ)∩Ω(y; ξ). Then (x∗y)∗zn ∈ ξ(ω)
and y ∈ ξ(ω). Since ξ(ω) is an n-fold strong ideal of X, we have x ∗ zn ∈ ξ(ω), i.e.,
ω ∈ Ω(x ∗ zn; ξ). Thus (ii) is holds. ¤

Corollary 3.20. If H̃ is a falling strong ideal of a BH-algebra X, then

(i) (∀x, y, z ∈ X)(x ∗ y ≤ z ⇒ Ω(y; ξ) ⊆ Ω(x ∗ z; ξ).
(ii) (∀x, y, z ∈ X)(Ω((x ∗ y) ∗ z; ξ) ∩ Ω(y; ξ) ⊆ Ω(x ∗ z; ξ).

Proof. Since the 1-fold strong ideal is precisely a strong ideal, these two conditions
hold by Theorem 3.19 . ¤

Theorem 3.21. If H̃ is a falling translation ideal of a BH-algebra X, then

(i) (∀x, y, z ∈ X)(x ≤ y ⇒ Ω(y∗x; ξ) ⊆ Ω((x∗z)∗(y∗z); ξ)∩Ω((z∗x)∗(z∗y); ξ).
(ii) (∀x, y, z ∈ X)(Ω(x∗y; ξ)∩Ω(y∗x; ξ) ⊆ Ω((x∗z)∗(y∗z); ξ)∩Ω((z∗x)∗(z∗y); ξ).

Proof. (i) Let x, y, z ∈ X be such that ω ∈ Ω(y ∗ x; ξ) and x ≤ y. Then y ∗ x ∈ ξ(ω)
and 0 = x∗y ∈ ξ(ω). Since ξ(ω) is a translation ideal of X, we have (x∗z)∗ (y ∗z) ∈
ξ(ω) and (z ∗x)∗(z ∗y) ∈ ξ(ω). Hence ω ∈ Ω((x∗z)∗(y ∗z); ξ)∩Ω((z ∗x)∗(z ∗y); ξ).
Hence (i) holds.
(ii) Let x, y, z ∈ X be such that ω ∈ Ω(x ∗ y; ξ) ∩Ω(y ∗ x; ξ). Then x ∗ y ∈ ξ(ω) and
y ∗ x ∈ ξ(ω). Since ξ(ω) is a translation ideal of X, we have (x ∗ z) ∗ (y ∗ z) ∈ ξ(ω)
and (z ∗ x) ∗ (z ∗ y) ∈ ξ(ω). Hence ω ∈ Ω((x ∗ z) ∗ (y ∗ z); ξ) ∩ Ω((z ∗ x) ∗ (z ∗ y); ξ).
Thus (ii) holds. ¤
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